Project Icon

labml

通过手机监控深度学习模型训练和硬件使用情况

提供通过移动设备和电脑实时监控深度学习模型训练和硬件使用的开源解决方案。集成简单,支持自定义可视化,记录详细实验信息,包括Git提交、配置和超参数。支持多人分布式训练和易于安装的实验服务器,方便用户全程跟踪训练进展。

machine-learning-experiments - 交互式机器学习实验的集合
GithubJupyter笔记本TensorFlow卷积神经网络开源项目机器学习递归神经网络
该项目展示了一系列交互式机器学习实验,包括Jupyter笔记本来演示模型训练过程,以及在线演示页面来展示模型运行效果。涵盖多层感知机至卷积神经网络等多种技术,适合探索和学习各类机器学习方法。
cml - 专注MLOps的开源持续集成工具
CI/CDCMLGitHub ActionsGitLabGithubMLOps开源项目
CML是一款专注MLOps的开源命令行工具,用于机器学习项目的持续集成和交付。它能自动化配置环境、训练评估模型、比较实验结果和监控数据变化。CML可在每次代码提交时自动执行工作流程,生成可视化报告。该工具采用GitFlow工作模式,无需额外服务即可搭建完整的机器学习平台。
llm - LLM实验项目集合 探索大型语言模型应用
API密钥GithubLLM实验OpenAIPinecone开源项目虚拟环境
该开源项目提供了一系列LLM实验。内容包括虚拟环境设置、必要包安装以及API集成指南。通过这些实验,开发者可以深入了解大型语言模型的应用,探索AI文本处理和向量数据库技术。项目注重实践,为AI领域学习者提供了有价值的资源。
instructlab - 创新的大语言模型对齐调优命令行工具
CLIGithubInstructLabLLM开源项目聊天机器人训练模型
InstructLab是为大语言模型(LLM)对齐调优设计的创新命令行工具。它采用合成数据方法,支持预训练模型下载、知识技能添加、合成数据生成、模型重训练和评估。工具兼容多种硬件平台,包括Apple M系列、AMD ROCm和NVIDIA CUDA,为LLM优化提供灵活高效的解决方案。
neoml - 跨平台多语言支持的端到端机器学习框架
ABBYYGithubNeoMLONNX开源项目机器学习框架神经网络
NeoML是一个端到端机器学习框架,可用于构建、训练和部署模型,适用于计算机视觉和自然语言处理任务,如图像预处理、分类、OCR和数据提取。支持100多种神经网络层类型和20多种传统机器学习算法,兼容CPU和GPU,并支持ONNX格式。适用的编程语言包括Python、C++、Java和Objective-C,且可运行于Windows、Linux、macOS、iOS和Android平台。
nannyml - 部署后模型性能估算和数据漂移检测
GithubNannyMLPCA开源项目数据漂移检测无目标模型性能估计
NannyML是一个开源的Python库,专为数据科学家设计,能够在没有目标数据的情况下估算模型的部署后性能,并检测数据漂移。它能将数据漂移警报与模型性能变化智能关联。NannyML支持所有表格数据、分类和回归模型,拥有简单易用的界面和互动式可视化功能。通过NannyML,用户可以监控模型性能、分析数据漂移、找到模型性能下降的根本原因,并避免不必要的警报干扰,轻松完成环境集成和配置。
llm-engine - 自定义和部署大语言模型的开源解决方案
GithubLLM EngineScale大语言模型开源项目推理API模型微调
LLM Engine是一款Python库、CLI和Helm图表,能够在Scale托管基础设施或自有Kubernetes云中自定义和部署基础模型。支持LLaMA、MPT和Falcon等开源基础模型的API部署和服务,并允许在自有数据上微调以优化性能。该引擎优化推理功能和开源集成,提高部署和微调效率,未来还将提供K8s安装文档和快速冷启动时间。
zenml-projects - ZenML构建的生产级机器学习项目集合
GithubMLOpsZenML开源框架开源项目机器学习项目生产级ML用例
ZenML Projects是一个展示使用ZenML构建的生产级机器学习用例集合。该仓库提供了涵盖时间序列、表格数据、计算机视觉等多个ML领域的现成MLOps工作流程。开发者可以直接使用或根据需求调整这些解决方案,快速启动机器学习项目。仓库包含多个由ZenML团队和社区维护的示例项目,覆盖了常见ML应用场景。
mmengine - 深度学习训练引擎支持大规模模型训练和多种策略
GithubMMEngineOpenMMLabPyTorch开源项目深度学习训练引擎
MMEngine是基于PyTorch的深度学习模型训练基础库,作为OpenMMLab代码库的训练引擎。它集成主流大规模模型训练框架,支持混合精度训练等多种策略,提供友好的配置系统和主流监控平台支持。MMEngine不仅适用于OpenMMLab项目,还可广泛应用于其他深度学习项目。
SportsLabKit - 专业体育分析工具包 实现比赛视频数据化
GithubSportsLabKit体育分析开源项目数据处理目标跟踪计算机视觉
SportsLabKit是一个开源的体育分析工具包,可将比赛视频转换为可分析的数据。目前主要用于足球领域,计划扩展到其他运动。核心功能包括高性能追踪、灵活架构、2D场地校准和数据封装,便于进行运动员追踪和数据分析。该项目集成了SORT、DeepSORT、ByteTrack等多种追踪算法,支持YOLOv8等检测模型,为研究人员和开发者提供了灵活的开发环境。SportsLabKit正在持续开发中,旨在提供更多计算机视觉工具和统一的数据表示方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号