Project Icon

CLIP-ViT-L-14-laion2B-s32B-b82K

CLIP-ViT-L-14模型实现高效零样本图像分类和检索

CLIP-ViT-L-14-laion2B-s32B-b82K模型基于LAION-2B英语数据集训练,在ImageNet-1k上实现75.3%的零样本top-1准确率。它支持零样本图像分类和图文检索等任务,是研究零样本图像分类的重要工具。该模型在JUWELS Booster超级计算机上完成训练,为计算机视觉研究提供了新的可能性。

CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
owlv2-base-patch16-finetuned - 介绍OWLv2模型在零样本物体检测中的应用与发展
CLIPGithubHuggingfaceOWLv2对象检测开源项目模型计算机视觉零样本检测
OWLv2模型是用于零样本物体检测的一个创新模型,使用CLIP作为多模态基础,同时采用ViT型Transformer以提取视觉特征,并通过因果语言模型获取文本特征。此模型的最大特点是其开放词汇分类功能,通过将固定分类层权重替换为文本模型中的类别名称嵌入实现。在常见检测数据集上,CLIP从头训练并微调,以学习精确的对象检测方法。此工具为AI研究人员提供了在计算机视觉领域探索鲁棒性、泛化和其他能力的机会。
GLIP - 视觉语言预训练模型实现高效零样本和小样本物体检测
GLIPGithub开源项目目标检测计算机视觉零样本学习预训练
GLIP是一种视觉语言预训练模型,在零样本和小样本物体检测任务中表现优异。该模型在COCO和LVIS等标准基准测试中超越了多个有监督基线。GLIP还具有出色的迁移能力,在13个下游物体检测任务中,少样本GLIP可与全监督Dynamic Head模型媲美。项目提供预训练、零样本评估和微调等功能的代码实现,以及多个预训练模型。
siglip-base-patch16-384 - 改进型CLIP架构的图像文本预训练模型
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型深度学习计算机视觉
SigLIP是基于CLIP架构的多模态模型,通过Sigmoid损失函数优化了图像文本预训练过程。模型在WebLI数据集完成预训练,支持零样本图像分类和文本检索任务。其特点是无需全局相似度标准化,既可支持大规模批量训练,也适用于小批量场景。
XLM-Roberta-Large-Vit-B-32 - 多语言CLIP模型的高性能文本编码器
CLIPGithubHuggingfaceXLM-Roberta图像编码器多语言开源项目文本编码器模型
XLM-Roberta-Large-Vit-B-32是一个多语言CLIP模型的文本编码器,支持超过50种语言。该模型与ViT-B-32图像编码器配合,可实现跨语言的图像-文本匹配。在MS-COCO数据集的多语言文本-图像检索任务中,R@10指标表现优异。模型可轻松提取多语言文本嵌入,为跨语言视觉-语言任务提供支持。使用简单,适用于多语言环境下的图像搜索、内容理解等应用场景。
chinese-clip-vit-large-patch14 - 结合ViT-L/14和RoBERTa-wwm-base的中文图文对比模型
Chinese-CLIPGithubHuggingface图像编码器图文相似度开源项目文本编码器模型零样本分类
这一模型采用ViT-L/14和RoBERTa-wwm-base进行编码,在大规模中文图文数据集上训练,支持高效的图文嵌入和相似度计算。项目提供直观的API和多项任务评估,展现了在零样本图像分类和图文检索上的杰出表现。
owlv2-large-patch14 - 开源零样本对象检测模型,支持多文本查询
AI研究CLIPGithubHuggingfaceOWLv2图像识别开源项目模型目标检测
OWLv2模型是一种零样文本感知对象检测模型,使用CLIP作为多模态骨干,通过结合视觉和文本特征实现开词汇检测。模型去除了视觉模型的最终token池化层,并附加分类和框头,能够处理多文本查询,扩展了图像识别的应用潜力。研究者通过重新训练和微调CLIP,提高了其在公开检测数据集上的性能,有助于探讨计算机视觉模型的鲁棒性。
vit_base_patch32_clip_384.openai_ft_in12k_in1k - 采用ViT技术的视觉Transformer模型
Fine-tuningGithubHuggingfaceVision Transformertimm图像分类开源项目模型预训练
这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。
siglip-base-patch16-256-multilingual - 基于Sigmoid损失函数的多语言视觉语言模型
GithubHuggingfaceSigLIPWebLI数据集图像分类多模态模型开源项目模型零样本学习
SigLIP是一个基于CLIP架构的多语言视觉语言模型,通过Sigmoid损失函数优化训练效果。模型在WebLI数据集上以256x256分辨率预训练,实现零样本图像分类和图文检索功能。相比CLIP模型,在批量处理和整体性能上都有提升。模型经过16个TPU-v4芯片训练,支持多语言处理,主要应用于图像分类和跨模态检索任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号