Project Icon

larger_clap_music

大规模音乐音频分类及特征提取的模型解决方案

通过对比语言音频预训练技术,CLAP模型实现高效的音频和文本特征提取和分类,适用于无监督学习环境。模型兼具SWINTransformer和RoBERTa的优点,可用来评估音频与文本间的相似性,且能满足多种音频分类和嵌入需求。

awesome-large-audio-models - 音频AI模型前沿进展与资源汇总
Github大型音频模型开源项目语音合成语音识别跨模态AI音乐生成
本项目汇总了音频AI领域的精选资源,涵盖语音识别、合成、翻译等多个方向的前沿进展。定期更新最新论文和开源实现,为研究者和开发者提供全面了解音频AI发展的平台。内容包括主流大型音频模型、各应用领域技术及大规模数据集,是音频AI研究的重要参考资料。
clapper - AI开源故事可视化工具 实现互动式视频创作
AIClapperGithub交互式开源开源项目视频制作
Clapper作为一款AI驱动的开源故事可视化工具,为用户提供了一种新颖的视频创作方式。通过运用高级抽象概念和AI辅助功能,该工具使得视频制作过程变得简单直观,无需专业知识即可完成。目前,Clapper的公开alpha版本已在Hugging Face平台上线,供用户试用和体验。
wav2vec2-large-nonverbalvocalization-classification - Nonverbal Vocalization分类的Wav2vec2模型扩展语音识别应用
GithubHuggingfacewav2vec2准确率声纹识别开源项目模型非语言发声音频分类
该模型利用Nonverbal Vocalization数据集,基于wav2vec2架构,进行非语言声带的分类。可识别诸如咬牙、咳嗽、打哈欠、哭泣等声音分类。Wav2vec2模型不仅提升了语音识别的准确性,还增强了在多语言及多声学场景中的应用。该模型支持简单的部署与系统集成,优化了语音交互的体验。
MERT-v1-95M - 新的音乐理解模型,适应多种任务需求
GithubHuggingfaceTransformer开源项目模型自监督学习音乐理解音频分类预训练模型
MERT-v1-95M模型在音乐音频预训练中应用新的范式和数据集,实现出色的任务泛化能力。与MERT-v0相比,该版本采用更高质量的伪标签,在24K Hz频率下训练了20,000小时的音频数据,支持音乐生成。95M参数的模型适合不同的硬件需求,输出75 Hz的特征速率。通过整合MLM预测和批内噪声混合技术,MERT-v1-95M在多种下游任务中表现出色。
wavlm-base - 适用于多语音任务的自监督预训练模型
GithubHuggingfaceLibriSpeechWavLM开源项目模型自监督学习语音识别音频分类
WavLM是基于自监督学习的语音预训练模型,旨在支持多种语音任务。模型在960小时Librispeech数据集上进行预训练,适用于语音识别和分类等任务,需在下游任务中微调。WavLM通过门控相对位置偏置和发音混合训练策略,强调说话者身份保留和内容建模,在SUPERB基准测试中表现优异。模型主要在英语环境中有良好表现,但目标是提供全语言栈的统一表示。
klaam - 阿拉伯语多功能语音处理技术,识别、分类与转换
Githubfastspeech2klaamwav2vec开源项目文本转语音语音识别
klaam项目通过采用尖端技术模型如wave2vec和fastspeech2,提供全面的阿拉伯语语音识别、分类和文字转语音服务。支持多种方言和数据集,便于培训、预测与快速部署。
transformers - 机器学习库,覆盖文本、视觉与音频处理
GithubHugging Face人工智能多模态开源项目机器学习自然语言处理
探索🤗 Transformers——一个功能全面的机器学习库,覆盖文本、视觉与音频处理。该库提供数千种可对接JAX、PyTorch或TensorFlow的预训练模型,适用于多种语言处理与多模态任务。主要功能包括: - 文本分类 - 信息提取 - 问答系统 - 摘要生成 - 翻译 - 文本生成 此外,还能处理表格问答、OCR及视觉问答等多模态任务。Transformers库易于使用,支持模型间的快速切换与无缝整合。
wav2vec2-base-superb-ks - 高效的关键词识别音频分类模型
GithubHuggingfaceSUPERBWav2Vec2关键词识别开源项目模型语音命令音频分类
Wav2Vec2-Base模型支持SUPERB关键字识别任务,具备高准确性和快速响应的特点。该模型预训练于16kHz语音音频,采用Speech Commands数据集,通过Hugging Face的管道实现关键词检测,适应实时设备应用。
wav2vec2-large-lv60 - 深度学习实现高性能语音识别 仅需少量标记数据
GithubHuggingfaceWav2Vec2开源项目模型深度学习语音识别语音预训练音频处理
Wav2Vec2是Facebook开发的语音预训练模型,通过无监督学习从原始音频中提取语音特征。该模型在大规模未标注数据上预训练后,能够以极少量的标注数据实现高性能语音识别。在LibriSpeech测试集上,全量标注数据训练可达1.8/3.3词错率;仅用1小时标注数据即超过先前100小时数据的最佳结果;10分钟标注数据也能实现4.8/8.2词错率。Wav2Vec2为低资源环境下的高质量语音识别提供了新的可能性。
wavlm-large - 微软WavLM:全栈语音处理的自监督预训练模型
GithubHuggingfaceSUPERB基准测试WavLM开源项目模型自监督学习语音处理预训练模型
WavLM-Large是微软开发的自监督语音预训练模型,针对全栈语音处理任务进行优化。模型基于HuBERT框架,引入混合话语训练策略和门控相对位置偏置,提升了语音内容建模和说话人身份识别能力。通过在94,000小时多样化语音数据上训练,WavLM-Large在SUPERB基准测试中展现出卓越性能,为多种语音处理任务带来显著改进。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号