Project Icon

fann

高性能开源神经网络库

FANN是一个用C语言实现的开源神经网络库,支持多层网络结构和多种连接方式。它具备跨平台兼容性、高性能计算能力和易用性,提供丰富的训练算法和激活函数。该库支持15种以上编程语言绑定,附带完整文档和图形界面,适用于研究和商业开发。FANN让用户能够便捷地构建、训练和部署神经网络模型。作为一个广受欢迎的项目,FANN日均下载量约100次,支持RPROP和Quickprop等多种训练方法,实现了多种激活函数,并可在固定点和浮点数系统上运行。其执行速度比类似库快达150倍,同时保持了良好的灵活性。FANN持续维护,为人工智能研究和应用提供了可靠的基础设施。

ruby-fann - Ruby环境下的高性能人工神经网络库
FANNGithubRubyRubyFann人工智能开源项目神经网络
ruby-fann是一个将FANN库集成到Ruby环境的开源项目。它为开发者提供了在Ruby中构建和使用多层人工神经网络的便捷方式,支持全连接和稀疏连接网络。这个库具有易用性、多功能性和高性能的特点。用户可以通过它训练神经网络、保存训练数据和网络状态,还能使用自定义回调函数实现高级训练控制。ruby-fann为Ruby生态系统带来了强大而灵活的神经网络开发能力。
lbann - 多层次并行化的高性能深度学习框架
GithubLBANN并行计算开源项目深度学习框架神经网络训练高性能计算
LBANN是一个开源的高性能深度学习训练框架,专注于多层次并行优化。它结合模型并行、数据并行和集成训练方法,高效处理大规模神经网络和海量数据。LBANN充分利用先进硬件资源,支持多种训练算法,包括监督、无监督、自监督和对抗性训练。该框架适用于需要高度可扩展性的深度学习研究和应用。
fastllm - 纯C++实现的跨平台大语言模型推理库
GPU加速Githubc++实现fastllm多平台大模型推理开源项目
fastllm是一个纯C++实现的大语言模型推理库,无第三方依赖,支持多平台部署。这个开源项目具有快速的推理速度,支持多种模型格式,可实现多卡部署和流式输出。fastllm兼容ChatGLM、Qwen、LLAMA等多种模型,提供Python接口和自定义模型结构功能。该项目适用于需要高效、灵活部署大语言模型的场景。
neural-fortran - Fortran实现的开源并行深度学习框架
FortranGithubneural-fortran并行计算开源项目深度学习神经网络
neural-fortran是一个基于Fortran的开源深度学习框架,支持密集和卷积神经网络的训练与推理。该框架提供多种优化器和激活函数,支持从Keras HDF5文件加载模型,并实现数据并行。其特点包括高性能计算、易用性和可扩展性,适用于多种深度学习应用场景。
tiny-dnn - 轻量级C++14深度学习库,适用于嵌入式系统和物联网设备
C++14Githubtiny-dnn嵌入式系统开源项目深度学习物联网设备
tiny-dnn是一个为计算资源有限的嵌入式系统和物联网设备设计的C++14深度学习库。该库无需GPU,通过TBB线程和SSE/AVX向量化实现了高效性能,在13分钟内达到了98.8%的MNIST准确率。其便携的头文件形式使其易于集成,支持多种网络层类型、激活函数、损失函数和优化算法。tiny-dnn还能导入Caffe模型,适合学习和构建神经网络应用。
caffe - 一个用于深度学习的快速开放框架
BAIRBVLCCaffeGithub开源项目模型动物园深度学习框架
Caffe是由伯克利AI研究中心和社区贡献者开发的深度学习框架,强调高效表达、速度和模块化。用户可以通过项目网站获取详细信息,包括DIY深度学习教程、文档、参考模型和社区模型库。Caffe提供多种自定义版本,例如优化CPU和多节点支持的Intel Caffe、适用于AMD和Intel设备的OpenCL Caffe,以及Windows Caffe。社区用户可通过Gitter聊天和Google论坛进行交流,提交问题和建议。项目遵循BSD 2-Clause许可证,鼓励在研究中引用。
oneDNN - 优化深度学习应用的跨平台性能库,支持多种处理器架构
CPU优化GithubUXL Foundationdeep learningoneAPI specificationoneDNN开源项目
oneAPI Deep Neural Network Library (oneDNN) 是一个开源的跨平台性能库,提供深度学习应用的核心模块。oneDNN 专为Intel架构处理器、Intel图形处理器和Arm 64位架构处理器进行优化,并实验性支持NVIDIA、AMD、OpenPOWER、IBMz 和 RISC-V 等架构的 GPU 和 CPU。深度学习应用及框架开发者可以利用oneDNN提升在多种硬件上的性能表现。
nnom - 适用于微控制器的神经网络库
GithubMicrocontrollerNNoMNeural Network开源项目灵活性高性能
NNoM 是为微控制器设计的高层次神经网络推理库,支持如 Inception、ResNet 和 DenseNet 等复杂结构,可一键部署 Keras 模型并提供用户友好的界面。其高性能后端选择和预编译功能确保了运行时零损耗,同时提供完整的评估工具如运行时分析和混淆矩阵。最新的 v0.4.x 版本新增了循环层(RNN)支持,并切换到更适合机器处理的结构化接口。与 TensorFlow Lite 和 STM32Cube.AI 的对比显示,NNoM 在推理时间和内存占用方面表现出色。
fnet-base - FNet模型采用傅里叶变换实现高效自然语言处理
FNetGLUE benchmarkGithubHuggingface傅里叶变换开源项目模型模型预训练自然语言处理
FNet是一种创新型自然语言处理模型,通过傅里叶变换替代传统注意力机制,提高了计算效率。该模型在C4数据集上预训练,采用掩码语言建模和下一句预测任务。在GLUE基准测试中,FNet达到BERT模型93%的性能,微调速度快32%。这种架构为大规模文本处理应用提供了高效选择。
finn - 高效量化神经网络加速器框架,助力FPGA上的AI推理
FINNFPGAGithub开源项目数据流架构深度学习推理量化神经网络
FINN是一个开源实验框架,专注于FPGA上的量化神经网络推理。它为每个网络生成定制的数据流式架构,实现高效、高吞吐量和低延迟的FPGA加速器。FINN提供跨软硬件抽象层的灵活性,支持深度神经网络研究,并通过Docker提供编译器环境和丰富的文档资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号