Project Icon

ffcv-imagenet

高效ImageNet训练框架提升模型性能

ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。

FCOS - 完全卷积单阶段对象检测技术
FCOSGithubResNet-50卷积神经网络开源项目性能提升目标检测
FCOS算法是一种完全卷积的单阶段对象检测方法,通过避免使用锚点框,提高了检测性能和速度。在COCO minival数据集上,FCOS实现了46FPS和40.3的AP评分,并在各种模型和硬件上表现出色,包括ResNe(x)t和MobileNet等。与Faster R-CNN相比,FCOS在ResNet-50平台上表现更佳(38.7对36.8的AP),且训练和推理时间更短。该项目已基于Detectron2实现,并引入了多项优化和改进。
fastai - 一个为从业者提供快速提供在标准深度学习领域中提供最先进的高级组件,并提供可以混合和匹配的低级组件构建新方法的深度学习库
GPU优化GithubPyTorchfastai开源项目深度学习计算机视觉
fastai是一个深度学习库,提供高层组件以快速实现高性能结果,同时为研究人员提供可组合的低层组件。通过分层架构和Python、PyTorch的灵活性,fastai在不牺牲易用性、灵活性和性能的情况下,实现了高效的深度学习。支持多种安装方式,包括Google Colab和conda,适用于Windows和Linux。学习资源丰富,包括书籍、免费课程和详细文档。
resnet50.tv_in1k - ResNet-B模型实现高效图像识别与分析
GithubHuggingfaceImageNetResNet-BTimm图像分类开源项目模型特征提取
ResNet-B模型是一款专为图像分类和特征提取而设计的工具,其特点包括ReLU激活和7x7卷积,适合224x224像素图像。在ImageNet-1k数据集上训练,具备优异的参数和计算性能。通过timm库,用户可以轻松将其应用于图像分类、特征提取和图像嵌入等多种场景。
nsfw-image-detection-large - FocalNet驱动的NSFW图像分类器实现高准确率内容审核
FocalNetGithubHuggingface人工智能内容审核图像识别开源项目模型防护过滤
该NSFW图像分类器基于microsoft/focalnet-base构建,将图像快速分类为安全、可疑和不安全三类。模型接受512x512像素输入,支持批量处理,响应时间低于100ms。适用于社交媒体、电商平台、约会应用等内容审核场景。经过数百万图像训练,在NSFW检测基准任务中准确率超过95%,有助于维护平台安全和用户体验。
beauty-net - 简洁灵活的PyTorch深度学习模板
GithubPyTorch对象导向开源项目模板美观高质量代码
BeautyNet是一个为PyTorch设计的简洁、灵活且可扩展的模板。该项目采用面向对象编程,代码质量高,结构清晰。BeautyNet提供简单的安装和运行步骤,便于快速上手和模型训练。这个模板旨在简化深度学习项目的开发流程,为研究人员和开发者提供高效的工作框架。
mixnet_l.ft_in1k - MixNet-L:轻量级混合深度卷积网络实现高效图像分类
GithubHuggingfaceImageNet-1kMixNettimm图像分类开源项目模型特征提取
mixnet_l.ft_in1k是一个在ImageNet-1k数据集上微调的MixNet架构图像分类模型。该模型采用混合深度卷积核,参数量仅为7.3M,计算量为0.6 GMACs,实现了高效的分类性能。支持224x224像素输入,可用于图像分类、特征提取和生成图像嵌入。作为一个轻量级yet性能出色的视觉特征提取器,适用于多种计算机视觉应用场景。
ffn - 专为大脑组织体积EM数据集实例分割的神经网络
Flood-Filling NetworksGithubTensorFlow图像处理实例分割开源项目神经网络
Flood-Filling Networks (FFNs) 是一种专为复杂大型形状实例分割设计的神经网络模型,特别适用于大脑组织的体积电子显微镜数据集。FFN模型在处理大规模、高分辨率的神经影像数据时表现出色,能够准确识别和分割复杂的神经元结构。该开源项目在FIB-25数据集上展现了优秀性能,为神经科学研究提供了强大的分割工具,适合需要高精度神经元分割的研究人员使用。
stable-fast - 优化HuggingFace Diffusers推理性能的轻量级框架
CUDADiffusersGithubPyTorchStable FastTorchScript开源项目
stable-fast是一个优化HuggingFace Diffusers推理性能的轻量级框架,支持NVIDIA GPU。相比TensorRT和AITemplate需要几十分钟的编译时间,stable-fast仅需几秒钟即可完成模型编译。主要特色包括动态形状、低精度计算和多种算子融合。它还兼容ControlNet和LoRA,并支持最新的StableVideoDiffusionPipeline,是加速PyTorch推理的有效工具。
resnet50_gn.a1h_in1k - ResNet-B架构图像分类模型结合先进训练方法
GithubHuggingfaceImageNetResNettimm图像分类开源项目模型神经网络
resnet50_gn.a1h_in1k是基于ResNet-B架构的图像分类模型,集成了多项先进训练技术。模型采用ReLU激活函数、单层7x7卷积与池化、1x1卷积快捷连接下采样等结构。在ImageNet-1k数据集上训练时,应用了LAMB优化器、增强型dropout、随机深度和RandAugment等方法。模型参数量为25.6M,GMACs为4.1,训练输入尺寸为224x224,测试输入尺寸为288x288。该模型可应用于图像分类、特征提取和图像嵌入等多种计算机视觉任务。
convnextv2_huge.fcmae_ft_in22k_in1k_384 - 高级卷积网络用于图像分类与特征提取
ConvNeXt-V2GithubHuggingfaceImageNet-1k图像分类开源项目模型特征骨干预训练模型
ConvNeXt-V2是一种先进的卷积网络模型,专为图像分类与特征提取而设计。此模型通过全卷积掩码自编码器进行预训练,并在ImageNet-22k和ImageNet-1k上进行微调。具备660.3M参数和338.0 GMACs的计算成本,专为384x384大小的图像设计,确保高效处理与高精度结果。其在主流图像分类任务中的表现卓越,达到88.668的Top-1准确率和98.738的Top-5准确率,其框架优化适配多种计算场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号