Project Icon

clip-japanese-base

日语CLIP模型,支持图像和文本的零样本分类与检索

该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。

项目介绍:clip-japanese-base

clip-japanese-base是一个由LY公司开发的日语版CLIP模型,即对比语言图像预训练模型。此模型经过约10亿对网络收集的图像-文本数据进行训练,能够处理诸多视觉任务,例如零样本图像分类、文本到图像检索以及图像到文本检索等。

如何使用

如果用户想使用这个模型,首先需要安装一些必要的Python包:

pip install pillow requests sentencepiece transformers torch timm

使用代码如下:

import io
import requests
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModel, AutoTokenizer

HF_MODEL_PATH = 'line-corporation/clip-japanese-base'
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_PATH, trust_remote_code=True)
processor = AutoImageProcessor.from_pretrained(HF_MODEL_PATH, trust_remote_code=True)
model = AutoModel.from_pretrained(HF_MODEL_PATH, trust_remote_code=True).to(device)

image = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content))
image = processor(image, return_tensors="pt").to(device)
text = tokenizer(["犬", "猫", "象"]).to(device)

with torch.no_grad():
    image_features = model.get_image_features(**image)
    text_features = model.get_text_features(**text)
    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)
# [[1., 0., 0.]]

以上代码通过一个示例说明了如何使用模型进行图像与文本的特征提取与匹配。

模型架构

clip-japanese-base在架构上采用Eva02-B作为图像编码器,而文本编码器则使用一个12层的BERT模型,该模型的初始化自rinna/japanese-clip-vit-b-16

性能评估

数据集

模型性能评估中使用了以下数据集:

结果

模型图像编码器参数文本编码器参数STAIR Captions (R@1)Recruit Datasets (acc@1)ImageNet-1K (acc@1)
我们的模型86M (Eva02-B)100M (BERT)0.300.890.58
Stable-ja-clip307M (ViT-L)100M (BERT)0.240.770.68
Rinna-ja-clip86M (ViT-B)100M (BERT)0.130.540.56
Laion-clip632M (ViT-H)561M (XLM-RoBERTa)0.300.830.58
Hakuhodo-ja-clip632M (ViT-H)100M (BERT)0.210.820.46

开源许可

clip-japanese-base项目遵循Apache 2.0许可协议,这意味着该模型可以在商业项目中使用,前提是必须遵循相应的许可规定。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号