Project Icon

PairRM

LLM质量提升的Pairwise奖励模型

Pairwise Reward Model通过比较一对候选输出对每个候选分配质量评分。该模型可用于有效评估LLM质量,通过对候选输出重新排序,增强LLM输出效果,并支持RLHF方法的指令调整。模型基于microsoft/deberta-v3-large,利用多样化的人类偏好数据集进行训练,性能接近GPT-4,在有限资源下实现高效对齐和质量提升。

LLaMA3-SFT - 研究奖励建模与在线RLHF应用
GithubHuggingfaceRLHFtransformers元语言模型在线学习开源项目模型高质量数据
LLaMA3-SFT项目提供了在Meta-Llama-3-8B模型基础上开发的SFT检查点,利用多样化高质量开源数据训练而成,尚未经过RLHF训练,是进行RLHF研究的良好起点。
mbart-large-en-ro - mBART微调模型:提升英罗翻译的精度与流畅度
BLEUGithubHuggingfacembart-large-en-ro开源项目微调模型翻译语言模型
mbart-large-cc25在wmt_en_ro上的微调版提供了出色的翻译性能,未处理时BLEU得分为28.1,经过处理后提升至38。项目基于PyTorch框架,开发者可在Hugging Face平台找到相关代码和文档,是多语言处理的有力工具。
LLM2Vec-Sheared-LLaMA-mntp - 三步实现大模型高效文本编码
GithubHuggingfaceLLM2Vec句子相似度开源项目文本编码无监督对比学习模型自然语言处理
LLM2Vec项目通过简单的三步法,将仅解码的大型语言模型转换为有效的文本编码器。这三步包括启用双向注意力机制、掩蔽下一个词预测和无监督对比学习。经过微调,这个模型能够在文本嵌入、信息检索和句子相似性等自然语言处理应用中取得高效表现。
deberta-xlarge-mnli - 高性能自然语言处理模型面向多任务学习优化
BERTDeBERTaGithubHuggingface人工智能开源项目机器学习模型自然语言处理
DeBERTa-xlarge-mnli是一个经过MNLI任务微调的大型语言模型。该模型采用解耦注意力机制和增强型掩码解码器,在多项NLU任务中表现优异。它在SQuAD、GLUE基准测试等任务上的成绩超越了BERT和RoBERTa,为复杂的自然语言理解应用提供了强大支持。
JailbreakingLLMs - 高效突破大型语言模型安全限制的PAIR算法
GithubJailbreakLLMPAIR算法开源项目语言模型安全黑盒攻击
JailbreakingLLMs项目开发了PAIR算法,用于高效生成大型语言模型的语义化越狱提示。该算法仅需黑盒访问权限,通过模拟社会工程攻击,实现自动化越狱过程。PAIR通常在20次查询内即可完成越狱,效率远超现有方法。实验表明,PAIR在各类开源和闭源语言模型上展现出优秀的越狱成功率和可迁移性。
deberta-large - DeBERTa模型利用解耦注意力机制提升自然语言理解能力
DeBERTaGithubHuggingface开源项目微软模型注意力机制自然语言处理语言模型
DeBERTa是微软开发的预训练语言模型,基于BERT和RoBERTa进行改进。该模型引入解耦注意力和增强型掩码解码器,在80GB训练数据上优化后,在多数自然语言理解任务中超越BERT和RoBERTa。DeBERTa在SQuAD和GLUE等基准测试中表现出色,其中DeBERTa-V2-XXLarge版本在多项任务上达到顶尖水平。研究者可通过Hugging Face的transformers库使用和微调DeBERTa模型。
bge-reranker-v2-m3 - 多语言重排模型优化检索性能
FlagEmbeddingGithubHuggingface多语言开源项目文本分类模型语义相关性重排序模型
bge-reranker-v2-m3是基于bge-m3开发的轻量级多语言重排模型。该模型部署简单,推理迅速,支持多语言处理。它能直接输出查询与文档的相关性分数,适用于多种检索场景。在BEIR、CMTEB等评测中表现出色,可有效提升检索系统效果。模型提供多个版本,可根据需求选择。
llama-trl - 使用 PPO 和 LoRA 微调 LLaMA
GithubLLaMA-TRLLoRAPPOReward Model TrainingSupervised Fine-tuning开源项目
本项目LLaMA-TRL通过PPO和LoRA技术进行大规模语言模型的微调,采用TRL(变压器强化学习)和PEFT(参数高效微调)方法。本文详细介绍了从安装依赖到具体实现的步骤,包括监督微调、奖励模型训练和PPO微调,助力开发者显著提升模型性能和任务适应能力。
SPPO - 自我对弈优化提升语言模型对齐效果
AlpacaEval 2.0Gemma-2-9B-It-SPPO-Iter3GithubLlama-3-8B-InstructMistral-7B-InstructSPPO开源项目
SPPO采用自我对弈框架和新的学习目标,有效提升大规模语言模型性能。通过理论推导和多数据集实证验证,SPPO无需外部信号即可超越GPT-4等模型。该项目源代码和多个优化模型如Mistral-7B、Llama-3-8B、Gemma-2-9B均已开源,详情可参考相关论文。
rtp-llm - 大型语言模型推理加速引擎
CUDAGithubrtp-llm多模态输入大语言模型开源项目量化
rtp-llm是阿里巴巴基础模型推理团队开发的大型语言模型推理加速引擎,广泛应用于支持淘宝问答、天猫、菜鸟网络等业务,并显著提升处理效率。该项目基于高性能CUDA技术,支持多种权重格式和多模态输入处理,跨多个硬件后端。新版本增强了GPU内存管理和设备后端,优化了动态批处理功能,提高了用户的使用和体验效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号