Project Icon

bert-base-japanese-v3-ner-wikipedia-dataset

基于维基百科数据集的日语命名实体识别BERT模型

本项目提供了一个基于BERT的日语命名实体识别模型,该模型使用维基百科数据集进行训练。模型能够识别日语文本中的人名、地名等实体,可通过Transformers库轻松调用。项目源自《大规模语言模型入门》一书,提供了使用示例和相关资源链接,采用Apache 2.0许可证。

bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
deberta-v2-base-japanese - 日语DeBERTa V2 base模型:为自然语言处理提供强大基础
DeBERTa V2GithubHuggingface开源项目日语机器学习模型自然语言处理预训练模型
DeBERTa V2 base日语模型基于维基百科、CC-100和OSCAR数据集预训练而成。该模型在情感分析、语义相似度和问答等多项自然语言理解任务中表现优异。模型采用Juman++分词技术,并使用sentencepiece构建32000个子词词表。预训练过程耗时3周,使用8块NVIDIA A100 GPU。在JGLUE基准测试中,模型在MARC-ja、JSTS、JNLI、JSQuAD和JComQA等任务上均取得了与现有最佳模型相当或更好的结果,突显了其在各种日语自然语言理解任务中的广泛适用性和高效性。这一模型为日语自然语言处理研究和应用提供了坚实基础。
bert-large-japanese-v2 - 更高效的日语文本处理BERT模型
BERTGithubHuggingface云TPU开源项目整个单词遮盖日本语模型词级标记
结合Unidic 2.1.2词典和WordPiece算法进行词汇标记的BERT模型,通过在CC-100和Jawiki语料库上的训练,提升日语文本处理的效率,适用于多种自然语言处理任务。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
bert-large-NER - BERT大型版命名实体识别模型实现最先进性能
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-large-NER是一个基于BERT大型模型的命名实体识别(NER)工具。该模型在CoNLL-2003数据集上训练,可准确识别地点、组织、人名和其他杂项四类实体。模型支持通过Transformers pipeline轻松集成,适用于多种NER应用场景。在测试集上,bert-large-NER的F1分数达到91.7%,展现了卓越的实体识别能力。
bert-base-japanese-v3-unsup-simcse-jawiki - 使用无监督SimCSE的BERT日文模型特性和应用
GithubHuggingfaceSimCSEbert-base-japanese-v3-unsup-simcse-jawikitransformers大规模语言模型开源项目模型语义相似度
本项目利用无监督SimCSE方法对BERT大型语言模型进行微调,重点在于日文数据集的应用。通过cl-tohoku/bert-base-japanese-v3模型和来自jawiki的句子数据集进行训练,旨在提高语言理解与相似度计算的能力。项目附带丰富的使用案例,例如通过Colab笔记本进行的训练与推论,帮助研究者与开发者了解模型的实际应用。这一无监督方法为自然语言处理任务提供了创新方案,尤其适合有特定语言需求的专业项目。
ner-bert-german - 基于BERT的德语命名实体识别模型实现精准NER分析
BERTGithubHuggingface命名实体识别开源项目德语机器学习模型自然语言处理
该模型通过对bert-base-multilingual-cased进行微调,实现德语文本中位置、组织和人名的识别。模型在wikiann数据集训练后,总体F1分数达0.8829,在人名实体识别方面表现尤为出色。模型使用Adam优化器和线性学习率调度器,经7轮训练完成。
deberta-v2-base-japanese-char-wwm - 日语DeBERTa V2模型实现字符级遮蔽与预训练
DeBERTa V2GithubHuggingfacetransformers字符级别开源项目日本語模型自然语言处理
该项目介绍了日语DeBERTa V2 base模型,该模型在日语Wikipedia、CC-100和OSCAR数据集上进行字符级分词和整体词遮蔽的预训练,可用于掩码语言建模及下游任务微调,采用了22,012个字符级子词的sentencepiece分词模型,通过transformers库进行训练。
bert4ner-base-chinese - 基于BERT的中文命名实体识别模型,具备高精度性能
BertSoftmaxGithubHuggingfacePEOPLEbert4ner中文实体识别开源项目模型
bert4ner-base-chinese项目是一个基于BERT的中文命名实体识别模型,在人民日报数据集上取得了高精度表现。通过BertSoftmax网络结构,能够准确识别文本中的人名、时间等实体信息。可通过nerpy库调用该模型,也支持无外部依赖的直接调用方式,适用于各种自然语言处理应用。
line-distilbert-base-japanese - LINE DistilBERT模型推动日语文本智能处理
Apache License 2.0GithubHuggingfaceLINE DistilBERT开源项目日本语模型模型架构预训练模型
LINE Corporation推出的DistilBERT模型专为日语文本处理而设计,基于BERT-base教师模型,在131 GB日语网络文本上完成了预训练。模型采用DistilBERT架构,有6层、768隐层、12个注意力头和66M参数。评估结果优秀,JGLUE评测中表现出色。其使用MeCab和SentencePiece进行分词和子词处理,词汇量为32768。适用于多种日语NLP任务,遵循Apache 2.0许可证。在GitHub上提供更多信息。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号