Project Icon

torch-mlir

为PyTorch生态系统提供高级编译器支持,并实现与MLIR生态系统的高效集成

Torch-MLIR项目为PyTorch生态系统提供高级编译器支持,并实现与MLIR生态系统的高效集成。通过多种路径,该项目能够将PyTorch模型转换成Torch MLIR方言,简化硬件供应商的开发过程。此外,还提供了预构建快照,便于安装和使用,并通过示例指导用户完成模型转换和结果运行。该项目是LLVM孵化器的一部分,正在持续发展,且拥有广泛的社区支持和交流渠道。

tch-rs - Rust语言的PyTorch C++ API接口
GithubPyTorchRustlibtorchnn::Moduletch-rs开源项目
tch-rs是Rust语言对PyTorch C++ API的绑定,通过简洁的封装实现高效的深度学习模型训练和推理。支持系统全局libtorch安装、手动安装和Python PyTorch安装,兼容CUDA并支持静态链接。提供详细的安装说明和丰富的示例代码,包括基础张量操作、梯度下降训练、神经网络构建和迁移学习等,适合不同水平的开发者。
pytorch-toolbelt - 专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集
GithubPyTorch乌克兰俄罗斯开源项目战争深度学习
pytorch-toolbelt是一款专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集。其功能包括灵活的编码器-解码器架构、多种模块(如CoordConv、SCSE、Hypercolumn等)、GPU友好的测试时增强(TTA)、大图像推理及常用方法,支持多种损失函数,并与Catalyst库无缝集成。这些工具旨在简化模型构建、优化和推理过程。
pytorch-forecasting - 前沿的时间序列预测工具包,提供灵活的高层API
GithubPyTorch ForecastingPyTorch Lightning开源项目时间序列预测深度学习神经网络
PyTorch Forecasting 是一个基于 PyTorch 的时间序列预测包,适用于实际应用和研究。它支持多种神经网络架构及自动日志记录,利用 PyTorch Lightning 实现多 GPU/CPU 的扩展训练,并内置模型解释功能。关键特性包括时间序列数据集类、基本模型类、增强的神经网络架构、多视角时间序列指标和超参数优化。安装简便,支持 pip 和 conda,文档详尽,并包含模型比较和使用案例。
toolformer-pytorch - 语言模型自主学习工具使用,提高API调用效率
API调用GithubMetaAIPytorchStability.aiToolformer开源项目
Toolformer-Pytorch是由MetaAI开发的开源项目,旨在使语言模型能够自主调用API工具来完成任务。得益于Stability.ai的支持和开源社区的贡献,该项目显著提升了语言模型对工具的理解和使用能力。无论是时间查询还是简单的数学运算,Toolformer都表现出色,同时通过优化和微调,降低了文本困惑度。安装简单,适用于各种Python环境。
hls4ml - FPGA中实现机器学习推理的高级综合语言工具
FPGAGithubhls4ml开源项目机器学习神经网络高等级综合
hls4ml是一个专为FPGA上实现机器学习推理而设计的开源软件包。它利用高级综合语言(HLS)将传统开源机器学习模型转化为可配置的固件,从而实现高效推理。项目提供详尽的文档和教程,适用于快速入门和深入研究。用户可以通过GitHub平台参与讨论和贡献。该软件包特别适用于对高性能和低延迟推理要求高的应用场景,如粒子物理和自动驾驶领域。支持与Xilinx Vivado HLS工具的集成,并提供多种安装方式。
Polygeist - 优化C/C++代码性能与可移植性的MLIR编译框架
GPU优化GithubLLVMMLIRPolygeist开源项目编译器
Polygeist是一个先进的编译框架,将C/C++代码转换为MLIR的多面体表示。它实现了自动代码优化、并行化和GPU转译,有效提升代码性能和可移植性。该项目集成了CUDA和ROCm后端,并与LLVM、MLIR和Clang紧密结合,为开发人员提供了强大的工具链以优化现有代码。Polygeist主要应用于高性能计算、自动并行化和跨平台开发领域。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
llama-160m-accelerator - 基于多阶段MLP的LLaMA-160M模型推理加速器
DockerGithubHuggingfacevLLM开源项目文本生成模型模型加速深度学习
这是一个为JackFram/llama-160m模型设计的加速器项目,借鉴了Medusa推测解码架构的思想。该加速器通过改造MLP为多阶段结构,实现了基于状态向量和先前采样令牌的单token预测,有效提升了模型推理速度。项目支持与vLLM和Hugging Face TGI等工具集成,为大型语言模型的高效部署提供了实用解决方案。加速器的训练过程轻量化,能够在短时间内完成,适用于各种规模的生成式模型。
pytorch_mgie - 多模态大语言模型驱动的图像编辑指导系统
AI绘图GithubGradioMGIE图像编辑大语言模型开源项目
pytorch_mgie是一个基于多模态大语言模型的图像编辑指导系统,采用Apple开源的ml-mgie技术。该项目通过自然语言指令实现图像编辑,并提供Gradio演示界面展示LLaVA-7B模型在图像编辑任务中的应用。项目包含预训练模型和环境配置指南,为研究和开发提供了实验平台。
torchlm - 面向人脸关键点检测的开源工具包
Githubtorchlm人脸关键点检测开源项目数据增强模型训练深度学习
torchlm是一个开源的人脸关键点检测工具包,提供训练、评估、导出和推理功能。它包含100多种数据增强方法,支持30多种原生关键点增强,可与torchvision和albumentations集成。torchlm实现了PIPNet等先进模型,在多个基准数据集上性能出色。该项目简化了人脸关键点检测的开发流程,适用于研究和实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号