Project Icon

llava-onevision-qwen2-72b-si

多模态模型提高视觉数据交互准确率

此开源项目使用多模态模型,准确率介于85.1%至93.7%之间,在AI2D、DocVQA、Science-QA等数据集表现优异。基于Qwen2语言模型,LLaVA-OneVision能在多语言环境中与视觉数据进行交互,经过大型图像及视频数据集训练,使用bfloat16精度。

llava-v1.6-mistral-7b-hf - 融合Mistral-7B的多模态视觉语言模型
GithubHuggingfaceLLaVA-NeXT图像理解多模态模型开源项目模型自然语言处理视觉问答
LLaVa-v1.6-mistral-7b-hf是基于Mistral-7B的多模态视觉语言模型,通过提高输入图像分辨率和优化视觉指令微调数据集,增强了推理、OCR和世界知识能力。该模型适用于图像描述、视觉问答等多模态对话任务,为开发高性能多模态聊天机器人提供了强大支持。
Qwen2-VL-72B-Instruct-GPTQ-Int4 - 多语言支持与视觉语义分析增强
GithubHuggingfaceQwen2-VL多语言支持开源项目模型视觉理解视频理解跨设备集成
Qwen2-VL在多模态处理技术上取得进展,增强了多语言支持、图像和视频解析能力。在视觉理解测试中表现优异,可处理超过20分钟的视频,实现高质量问答和内容创作,并具备移动设备与机器人操作能力。多维位置嵌入提升了多模态处理效能,可识别多种语言文本,适用于复杂视觉场景。
cogvlm2-llama3-chat-19B - 支持8K内容长度和高分辨率图像的开源多模态AI模型
CogVLM2GithubHuggingface人工智能图像理解对话模型开源项目模型视觉语言模型
CogVLM2是基于Meta-Llama-3-8B-Instruct的开源多模态AI模型,支持8K内容长度和1344*1344图像分辨率。该模型在TextVQA、DocVQA等多项基准测试中表现优异,具备图像理解和对话能力。CogVLM2提供英文和中英双语版本,在开源模型中表现突出,部分任务性能可与非开源模型媲美。
Qwen2-VL-7B-Instruct-AWQ - 先进视觉语言模型实现多分辨率图像和长视频理解
GithubHuggingfaceQwen2-VL图像理解多模态开源项目模型视觉语言模型视频理解
Qwen2-VL-7B-Instruct-AWQ是一款支持多分辨率图像和长视频理解的视觉语言模型。该模型在视觉理解基准测试中表现出色,具备复杂推理和决策能力,可应用于移动设备和机器人自动操作。模型支持多语言处理,采用动态分辨率和多模态旋转位置嵌入等技术,显著提升了多模态处理能力。
llama3-llava-next-8b-hf - LLaVA-NeXT:Llama 3驱动的多模态AI模型
GithubHuggingfaceLLaVA-NeXT图像处理多模态开源项目模型深度学习自然语言处理
LLaVA-NeXT是一个基于Llama 3的多模态AI模型,整合了预训练语言模型和视觉编码器。通过高质量数据混合和强化语言骨干网络,该模型在图像描述、视觉问答和多模态对话等任务中表现出色。LLaVA-NeXT支持Python接口,并提供4位量化和Flash Attention 2优化,以提升性能和效率。作为开源项目,LLaVA-NeXT为研究人员和开发者提供了探索多模态AI的有力工具。
nanoLLaVA - 轻量级视觉语言模型实现边缘设备高效部署
GithubHuggingfacenanoLLaVA人工智能多模态开源项目机器学习模型视觉语言模型
nanoLLaVA是一款1B级视觉语言模型,结合Quyen-SE和SigLIP视觉编码器技术。该模型在VQA v2和TextVQA等视觉问答测试中表现优异,同时优化了在边缘设备上的运行效率。nanoLLaVA采用ChatML标准,支持图像描述和视觉问答功能,并提供简洁的API接口,方便开发者集成到不同应用场景。
Qwen2-VL-2B-Instruct - 先进的多模态AI模型 支持高分辨率图像和长视频理解
GithubHuggingfaceQwen2-VL图像理解多模态开源项目模型视觉语言模型视频理解
Qwen2-VL-2B-Instruct是一个开源的视觉语言模型,支持处理任意分辨率的图像和20分钟以上的视频。该模型在多项视觉理解基准测试中表现出色,具有复杂推理和决策能力。Qwen2-VL-2B-Instruct采用了动态分辨率和多模态旋转位置嵌入技术,提高了多模态处理能力。此外,它还支持多语言理解,可应用于移动设备和机器人操作等领域。
Video-LLaVA - 统一视觉表示学习的新方法 增强跨模态交互能力
GithubVideo-LLaVA图像理解多模态开源项目视觉语言模型视频理解
Video-LLaVA项目提出了一种新的对齐方法,实现图像和视频统一视觉表示的学习。该模型在无图像-视频配对数据的情况下,展现出色的跨模态交互能力,同时提升图像和视频理解性能。研究显示多模态学习的互补性明显改善了模型在各类视觉任务上的表现,为视觉-语言模型开发提供新思路。
Qwen2-VL-72B-Instruct - 多模态视觉语言模型实现图像视频理解与交互
GithubHuggingfaceQwen2-VL图像识别多模态处理开源项目模型视觉语言模型视频理解
Qwen2-VL-72B-Instruct是一款多模态视觉语言模型,具备处理任意分辨率图像和长达20分钟视频的能力。该模型可执行复杂视觉推理任务,支持多语言,并能作为智能代理操控设备。在多项视觉语言基准测试中,Qwen2-VL-72B-Instruct展现出优异的性能。
MG-LLaVA - 融合多粒度视觉特征的大语言模型
GithubMG-LLaVA多模态大语言模型多粒度视觉指令调优开源项目性能提升视觉处理
MG-LLaVA是一种创新的多模态大语言模型,通过整合低分辨率、高分辨率和物体中心特征,显著提升了视觉处理能力。模型引入高分辨率视觉编码器捕捉细节,并利用Conv-Gate网络融合视觉特征。同时集成离线检测器的物体级特征,增强了物体识别能力。仅基于公开多模态数据进行指令微调,MG-LLaVA在多项基准测试中展现出优异的感知表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号