Project Icon

mixture-of-experts

稀疏门控专家混合模型的Pytorch实现

基于Pytorch实现的稀疏门控专家混合模型,可以在保持计算量不变的情况下大幅增加语言模型的参数量。项目参考了TensorFlow的实现,并进行了增强。还包含ST Mixture of Experts的使用指南,安装和使用示例,以及自定义专家网络的支持。

modular-diffusion - 灵活可扩展的PyTorch扩散模型框架
GithubModular DiffusionPyTorch开源项目扩散模型机器学习模块化设计
Modular Diffusion是一个基于PyTorch的模块化扩散模型框架,为设计和训练自定义扩散模型提供了简洁的API。该框架支持多种噪声类型、调度类型、去噪网络和损失函数,并提供了预构建模块库。Modular Diffusion适用于图像生成和非自回归文本合成等多种应用场景,适合AI研究人员和爱好者使用。其模块化设计简化了新型扩散模型的创建和实验过程。
m2 - 子二次GEMM架构Monarch Mixer实现高效语言模型
GithubM2-BERTMonarch Mixer人工智能开源项目机器学习自然语言处理
Monarch Mixer是一种创新的子二次GEMM架构,用于训练序列长度和模型维度均为子二次的语言模型。该架构使用Monarch矩阵层替代Transformer中的注意力和MLP操作,提高了计算效率。基于此架构的M2-BERT模型在减少25%参数和计算量的同时,在GLUE基准测试中达到了与BERT相当的性能。项目开源了预训练模型权重以及预训练和微调代码,方便研究者进行further研究。
mt-dnn - 多任务深度神经网络在自然语言理解中的最新应用
GithubMT-DNNPyTorch多任务深度神经网络开源项目自然语言理解预训练模型
该项目实现了基于PyTorch的多任务深度神经网络(MT-DNN),主要用于自然语言理解。最新版本添加了语言模型预训练和微调的对抗性训练功能。用户可以使用pip安装或通过Docker快速启动,项目提供详细的训练和微调步骤,支持序列标注和问答任务。此外,项目包含模型嵌入提取和训练加速功能。目前由于政策变化,公共存储解决方案暂不提供。
DeepSeek-MoE - 创新MoE架构打造高效大规模语言模型
DeepSeekMoEGithubMoE架构大语言模型开源模型开源项目模型评估
DeepSeek-MoE项目开发了创新的混合专家架构语言模型,采用细粒度专家分割和共享专家隔离策略。该16.4B参数模型仅使用40%计算量就达到DeepSeek 7B和LLaMA2 7B的性能水平。模型可在单个40GB内存GPU上直接部署运行,无需量化,为学术和商业研究提供了高效便捷的工具。
CALM-pytorch - 组合式增强大型语言模型框架
CALMGithubLLM人工智能开源项目深度学习神经网络
CALM-pytorch是基于Google Deepmind研究的开源PyTorch实现,旨在通过组合多个专业LLM来增强大型语言模型的能力。该框架支持集成任意数量的增强型模型,提供灵活的连接配置和便捷的训练工具。CALM-pytorch可与多种Transformer架构兼容,包括视觉Transformer,为研究人员和开发者提供了一个强大的平台来探索和扩展LLM的潜力。不仅支持文本处理,还能整合视觉和音频模型,为多模态AI应用开发提供了强大支持。
gen-efficientnet-pytorch - 泛型EfficientNet和其它高效PyTorch模型的实现
EfficientNetGithubMixNetMobileNetPyTorch开源项目模型
本项目实现了EfficientNet、MixNet、MobileNetV3等多种高效模型,利用通用架构定义支持多种计算高效的神经网络。所有模型均基于MobileNet V1/V2块序列设计,并支持字符串化架构配置。请注意,该项目现已停止维护,推荐使用`timm`库获取更多功能和权重兼容的模型。
Ensemble-Pytorch - PyTorch集成学习框架助力模型优化
Ensemble-PyTorchGithubpytorch开源项目机器学习模型集成深度学习
Ensemble-Pytorch是一个为PyTorch设计的集成学习框架,旨在提高深度学习模型的性能和鲁棒性。该框架支持多种集成策略,如Fusion、Voting、Bagging和Gradient Boosting,适用于分类和回归任务。作为PyTorch生态系统的一部分,Ensemble-Pytorch提供简洁的API和详细文档,便于研究人员和开发者实现和优化集成模型。
mmengine - 深度学习训练引擎支持大规模模型训练和多种策略
GithubMMEngineOpenMMLabPyTorch开源项目深度学习训练引擎
MMEngine是基于PyTorch的深度学习模型训练基础库,作为OpenMMLab代码库的训练引擎。它集成主流大规模模型训练框架,支持混合精度训练等多种策略,提供友好的配置系统和主流监控平台支持。MMEngine不仅适用于OpenMMLab项目,还可广泛应用于其他深度学习项目。
DeepSeek-V2 - 兼顾效率与经济性的大规模混合专家语言模型
DeepSeek-V2Github大语言模型开源项目混合专家模型自然语言处理预训练模型
DeepSeek-V2是一款基于专家混合(MoE)架构的大规模语言模型,总参数量达2360亿,每个token激活210亿参数。相较于DeepSeek 67B,该模型在提升性能的同时,显著降低了训练成本和推理资源消耗。DeepSeek-V2在多项标准基准测试和开放式生成任务中表现优异,展现了其在多领域的应用潜力。
pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号