Project Icon

robotic-transformer-pytorch

RT1机器人控制Transformer模型的PyTorch实现

本项目是Google Robotics团队RT1(Robotic Transformer)的PyTorch实现版本。RT1是一个结合视觉和自然语言处理的机器人控制Transformer模型。该实现包含MaxViT视觉主干网络和RT1核心模型,支持视频输入和文本指令处理。项目提供简洁API,实现了条件采样和跨注意力等功能,可应用于多种机器人控制场景。

机器人变换器 - Pytorch

在Pytorch中实现Google机器人团队的RT1(机器人变换器)

安装

$ pip install robotic-transformer-pytorch

使用方法

import torch
from robotic_transformer_pytorch import MaxViT, RT1

vit = MaxViT(
    num_classes = 1000,
    dim_conv_stem = 64,
    dim = 96,
    dim_head = 32,
    depth = (2, 2, 5, 2),
    window_size = 7,
    mbconv_expansion_rate = 4,
    mbconv_shrinkage_rate = 0.25,
    dropout = 0.1
)

model = RT1(
    vit = vit,
    num_actions = 11,
    depth = 6,
    heads = 8,
    dim_head = 64,
    cond_drop_prob = 0.2
)

video = torch.randn(2, 3, 6, 224, 224)

instructions = [
    '把桌子上的苹果拿给我',
    '请递一下黄油'
]

train_logits = model(video, instructions) # (2, 6, 11, 256) # (批次, 帧数, 动作数, 分箱数)

# 经过大量训练后

model.eval()
eval_logits = model(video, instructions, cond_scale = 3.) # 使用条件比例为3的无分类器引导

致谢

  • 感谢Stability.ai慷慨赞助,使我们能够开展和开源前沿人工智能研究

待办事项

  • 添加无分类器引导选项
  • 添加基于交叉注意力的条件设置

引用

@inproceedings{rt12022arxiv,
    title    = {RT-1: Robotics Transformer for Real-World Control at Scale},
    author   = {Anthony Brohan and Noah Brown and Justice Carbajal and  Yevgen Chebotar and Joseph Dabis and Chelsea Finn and Keerthana Gopalakrishnan and Karol Hausman and Alex Herzog and Jasmine Hsu and Julian Ibarz and Brian Ichter and Alex Irpan and Tomas Jackson and  Sally Jesmonth and Nikhil Joshi and Ryan Julian and Dmitry Kalashnikov and Yuheng Kuang and Isabel Leal and Kuang-Huei Lee and  Sergey Levine and Yao Lu and Utsav Malla and Deeksha Manjunath and  Igor Mordatch and Ofir Nachum and Carolina Parada and Jodilyn Peralta and Emily Perez and Karl Pertsch and Jornell Quiambao and  Kanishka Rao and Michael Ryoo and Grecia Salazar and Pannag Sanketi and Kevin Sayed and Jaspiar Singh and Sumedh Sontakke and Austin Stone and Clayton Tan and Huong Tran and Vincent Vanhoucke and Steve Vega and Quan Vuong and Fei Xia and Ted Xiao and Peng Xu and Sichun Xu and Tianhe Yu and Brianna Zitkovich},
    booktitle = {arXiv preprint arXiv:2204.01691},
    year      = {2022}
}
@inproceedings{Tu2022MaxViTMV,
    title   = {MaxViT: Multi-Axis Vision Transformer},
    author  = {Zhengzhong Tu and Hossein Talebi and Han Zhang and Feng Yang and Peyman Milanfar and Alan Conrad Bovik and Yinxiao Li},
    year    = {2022}
}
@misc{peebles2022scalable,
    title   = {Scalable Diffusion Models with Transformers},
    author  = {William Peebles and Saining Xie},
    year    = {2022},
    eprint  = {2212.09748},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号