Project Icon

speculative-decoding

推测解码技术,优化大型语言模型推理速度

该开源项目聚焦于推测解码技术的研究与实现,旨在提升大型语言模型的文本生成效率。项目涵盖了多种推测解码策略,包括提前退出、推测采样和先知变压器。同时,项目致力于优化批处理推测解码,以增强整体性能。研究计划还包括对比不同策略的效果,并探索微观优化方法。这些工作为加快AI模型推理速度提供了新的技术思路。

Speculative Decoding

Explorations into some recent techniques surrounding speculative decoding

Also have a few ideas of my own that I will try and share in this repository, if they work. The goal is to initially use it to speed up the text-to-semantic decoder in Spear-TTS

Appreciation

  • StabilityAI and 🤗 Huggingface for the generous sponsorship, as well as my other sponsors, for affording me the independence to open source current artificial intelligence techniques.

Todo

  • in early exit scheme, cache the hidden layer during spec decoding, as small and large models share the same first few layers

  • for early exit, allow an extra transformer block head (separate from main transformer stem)

  • figure out batched spec decoding - different rows may advance at different rates

  • further optimize batched spec decoding, as losing some performance from all the indexing - seems like it will take some work for this technique to be actually usable

  • make batched spec decoding work with early exit strategy

  • complete speculative sampling with prophet transformer idea - seems to work well! 🙌

  • get some wandb charts and see how prophet compares with early exit strategy, share on repository

  • also run experiments to see if prophet transformer brings any benefit to main model loss. original prophet paper only did a simple linear projection

  • for early exit strategy, try randomly summing last cached embedding back to the same model (a la alphafold2 recycling), randomly cropped along sequence length, and train early exit loss this way. see if one can improve the gamma this way

  • dedicate a morning to microoptimizations

Citations

@inproceedings{Leviathan2022FastIF,
    title   = {Fast Inference from Transformers via Speculative Decoding},
    author  = {Yaniv Leviathan and Matan Kalman and Y. Matias},
    booktitle = {International Conference on Machine Learning},
    year    = {2022},
    url     = {https://api.semanticscholar.org/CorpusID:254096365}
}
@inproceedings{sun2023spectr,
    title     = {SpecTr: Fast Speculative Decoding via Optimal Transport},
    author    = {Ziteng Sun and Ananda Theertha Suresh and Jae Hun Ro and Ahmad Beirami and Himanshu Jain and Felix Yu and Michael Riley and Sanjiv Kumar},
    booktitle = {Workshop on Efficient Systems for Foundation Models @ ICML2023},
    year      = {2023},
    url       = {https://openreview.net/forum?id=d0mGsaheuT}
}
@article{Chen2023AcceleratingLL,
    title     = {Accelerating Large Language Model Decoding with Speculative Sampling},
    author    = {Charlie Chen and Sebastian Borgeaud and Geoffrey Irving and Jean-Baptiste Lespiau and L. Sifre and John M. Jumper},
    journal   = {ArXiv},
    year      = {2023},
    volume    = {abs/2302.01318},
    url       = {https://api.semanticscholar.org/CorpusID:256503945}
}
@article{Yan2020ProphetNetPF,
    title   = {ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training},
    author  = {Yu Yan and Weizhen Qi and Yeyun Gong and Dayiheng Liu and Nan Duan and Jiusheng Chen and Ruofei Zhang and Ming Zhou},
    journal = {ArXiv},
    year    = {2020},
    volume  = {abs/2001.04063},
    url     = {https://api.semanticscholar.org/CorpusID:210164665}
}
@article{Zhang2023DraftV,
    title     = {Draft \& Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding},
    author    = {Jinchao Zhang and Jue Wang and Huan Li and Lidan Shou and Ke Chen and Gang Chen and Sharad Mehrotra},
    journal   = {ArXiv},
    year      = {2023},
    volume    = {abs/2309.08168},
    url       = {https://api.semanticscholar.org/CorpusID:262013673}
}
@misc{medusa,
    author     = {Tianle Cai and Yuhong Li and Zhengyang Geng and Hongwu Peng and Tri Dao},
    title      = {Medusa: Simple Framework for Accelerating LLM Generation with Multiple Decoding Heads},
    year       = {2023},
    publisher  = {GitHub},
    journal    = {GitHub repository},
    howpublished = {\url{https://github.com/FasterDecoding/Medusa}},
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号