Project Icon

x-clip

灵活实现的CLIP视觉语言预训练模型

x-clip是一个简洁而全面的CLIP实现,整合了多项前沿研究成果。该项目支持灵活的模型配置,包括自定义文本和图像编码器、多视图对比学习和视觉自监督学习等功能。通过易用的API,研究人员可以快速实验各种CLIP变体和改进方案。x-clip适用于图像检索、跨模态理解等多种视觉语言任务。

clip-vit-base-patch32 - OpenAI CLIP模型实现零样本图像分类的视觉语言预训练
CLIPGithubHuggingfaceOpenAI图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言预训练模型,使用ViT-B/32和Transformer架构分别作为图像和文本编码器。通过对比学习训练,CLIP能实现零样本图像分类等任务,在多项计算机视觉基准测试中表现优异。尽管在细粒度分类和物体计数方面存在局限,CLIP为研究人员提供了探索模型鲁棒性和泛化能力的重要工具。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
xclip-base-patch32 - X-CLIP视频语言理解模型在Kinetics-400数据集上的应用
GithubHuggingfaceX-CLIP开源项目模型深度学习自然语言处理视频分类计算机视觉
xclip-base-patch32是一个基于CLIP架构的视频语言理解模型,通过Kinetics-400数据集进行全监督训练。该模型支持零样本、少样本及全监督视频分类,以及视频文本检索等任务。在224x224分辨率和每视频8帧的训练条件下,模型在Kinetics-400测试集上达到80.4%的top-1准确率和95.0%的top-5准确率,展现出优秀的视频分类性能。
chinese-clip-vit-base-patch16 - 中文数据驱动的多模态对比学习工具
Chinese-CLIPGithubHuggingface图像识别多模态检索开源项目模型深度学习零样本学习
项目通过ViT和RoBERTa实现了中文CLIP模型,支持图像和文本的嵌入计算及相似性分析,具备零样本学习和图文检索功能。该模型在多项基准测试中表现优秀,包括MUGE、Flickr30K-CN等。结合其官方API,用户可轻松实现多场景中的图文转换与识别。详细信息和实施教程可在GitHub获取。
Long-CLIP - CLIP模型长文本处理能力升级 显著提升图像检索效果
AI模型CLIPGithubLong-CLIP开源项目文本-图像检索零样本分类
Long-CLIP项目将CLIP模型的最大输入长度从77扩展到248,大幅提升了长文本图像检索性能。在长标题文本-图像检索任务中,R@5指标提高20%;传统文本-图像检索提升6%。这一改进可直接应用于需要长文本处理能力的各类任务,为图像检索和生成领域带来显著进展。
metaclip-h14-fullcc2.5b - 大规模视觉语言模型基于25亿CommonCrawl数据训练
GithubHuggingfaceMetaCLIP多模态学习开源项目模型自然语言处理计算机视觉零样本分类
MetaCLIP是一个基于25亿CommonCrawl数据点训练的大规模视觉语言模型。该模型由Xu等人在《Demystifying CLIP Data》论文中提出,旨在解析CLIP的数据准备流程。MetaCLIP支持图像与文本的联合嵌入,可应用于零样本图像分类、文本图像检索等任务。作为一个开源项目,MetaCLIP为研究人员提供了探索大规模视觉语言模型的新方向,有助于推进计算机视觉和自然语言处理领域的发展。
vit_base_patch16_clip_224.openai - CLIP:跨模态视觉语言理解模型
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉-语言预训练模型,在timm库中实现。它使用ViT-B/16 Transformer作为图像编码器,masked self-attention Transformer作为文本编码器,通过对比学习优化图像-文本对相似度。CLIP在零样本图像分类任务中展现出优秀的鲁棒性和泛化能力,但在细粒度分类和物体计数方面仍有局限。该模型主要面向AI研究人员,用于探索计算机视觉模型的能力和局限性。
clip-retrieval - 构建高效图像和文本检索系统的开源工具
Githubclip-retrieval图像嵌入开源项目文本嵌入机器学习语义搜索
clip-retrieval 提供一个建立语义搜索系统的强大工具,使得用户能够迅速实现图像和文本的嵌入计算及索引构建。该项目能在20小时内处理超过1亿的图文嵌入,支持远程查询、数据过滤以及简洁的前端用户界面,适用于学术研究和商业应用。
metaclip-b32-400m - 揭秘CLIP数据处理方法的高性能视觉语言模型
GithubHuggingfaceMetaCLIP图像文本匹配开源项目模型自然语言处理计算机视觉零样本图像分类
MetaCLIP-b32-400m是基于CommonCrawl数据集训练的视觉语言模型,旨在解析CLIP的数据准备方法。该模型构建了图像和文本的共享嵌入空间,支持零样本图像分类和基于文本的图像检索等功能。研究人员可通过此模型探究CLIP的数据处理流程,加深对视觉语言模型训练过程的理解。
rclip - AI驱动的命令行图像搜索工具
AI图像搜索CLIPGithubOpenAIrclip命令行工具开源项目
rclip是一款开源的命令行图像搜索工具,采用OpenAI的CLIP神经网络技术。该工具支持文本和图像查询,可进行相似图像搜索和多条件组合查询。rclip具有快速处理大量图片的能力,提供预览功能,并支持多种操作系统。这个创新工具为图像管理和搜索提供了新的解决方案,适合需要高效图像检索的专业人士和摄影爱好者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号