Project Icon

ScienceQA

多模态推理与思维链技术在科学问题回答中的创新应用

ScienceQA项目结合多模态推理和思维链技术,开发了一个包含图像和文本的大规模科学问题数据集。通过利用GPT等先进语言模型,该项目在科学问题回答任务中实现了高达96%的准确率。ScienceQA已被多家机构采用,并在多个顶级学术会议上展示,展现了其在科学教育和人工智能领域的应用潜力。

ScienceQA: Science Question Answering

VQA Science Problems Open Domain Multi-Modal ScienceQA Chain-of-Thought GPT-3 ChatGPT GPT-4 LLMs

Data and code for NeurIPS 2022 Paper "Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering".

For more details, please refer to the project page with dataset exploration and visualization tools: https://scienceqa.github.io.

:bell: If you have any questions or suggestions, please don't hesitate to let us know. You can directly email Pan Lu at UCLA using the email address lupantech@gmail.com, comment on the Twitter, or post an issue on this repository.

💥 News 💥

  • [2023.12.29] 🚨 We have a major update featuring over 100 recent models! We appreciate your contributions and feedback. 🚀

  • [2023.05.04] ScienceQA Featured in Leaked Google Document: "We Have No Moat, And Neither Does OpenAI": A recent leak of an internal Google document highlights the advancements and impact of ScienceQA within the AI research community. 🎯

  • [2023.05.03] In April, our ScienceQA dataset was downloaded 1,421 times from HuggingFace Datasets, showcasing its growing popularity in the community. [Link] 🌟

  • [2023.04.19] Chameleon: Developed by UCLA and Microsoft, this innovative project achieves a new SOTA in the few-shot setting, reaching an impressive 86.54%. :star:

  • [2023.04.17] LLaVA: A collaborative effort by UW–Madison and Microsoft, this groundbreaking work sets a new SOTA at 92.53%. :star:

  • [2023.04.01] Our work is accepted by CVPR 2023 O-DRUM Workshop.

  • [2023.04.01] Our work is covered by Towards AI.

  • [2023.04.01] Our ScienceQA dataset was downloaded 377 times in March at HuggingFace Datasets.

  • [2023.03.30] The ScienceQA dataset is now included at OpenDataLab.

  • [2023.03.28] The ScienceQA dataset has served as the primary benchmark for LLaMA-Adapter, developed by Shanghai AI Laboratory, UCLA, and CUHK. :star:

  • [2023.02.13] Our work gives an oral presentation by Pan Lu at AAAI 2023 KnowledgeNLP Workshop.

  • [2023.02.05] Our work is covered by MarkTechPost.

  • [2023.02.24] The ScienceQA dataset is now included at HuggingFace Datasets. :star:

  • [2023.02.02] The ScienceQA dataset has served as the primary benchmark for the new generation of multimodal reasoning systems, Multimodal-CoT, developed by Amazon Science.

  • [2022.11.29] Our work gives an poster presentation by Pan Lu at NeurIPS 2022.

  • [2022.11.20] Our work is covered by Geek Culture | Medium.

  • [2022.11] Our work is now included at Paper with Code.

  • [2022.09.22] Our work is accepted to NeurIPS 2022. 🌟

  • [2022.09.20] Our work is featured in Deep AI.

🌟 Star History

Star History Chart

:fire: Leaderboard :fire:

Evaluation of different methods on the test split (whole: 4,241, mini: 1,000 examples). The accuracies across various categories and the overall average are reported below.

😀 You are invited to contribute your results to the TabMWP test split! Please send your result scores to this email or open a new issue at the github repository.

⚠️⚠️⚠️ Caveat: The data in the leaderboard is collected manually from existing papers. There might be some errors in the data, ambiguous data due to different interpretations, and missing data due to the lack of information in the papers. Make sure to double-check the data before using it. Please contact us at this email if you find any errors or have any suggestions. We appreciate your contributions and feedback.

The interactive leaderboard is available at https://scienceqa.github.io/leaderboard.html.

#ModelMethodLearning#Size#PLinkDateNATSOCLANTXTIMGNOG1-6G7-12Avg
*Human Performance----Link22-09-2090.2384.9787.4889.6087.5088.1091.5982.4288.40
*Random Chance----Link22-09-2040.2846.1329.2547.4540.0833.6639.3540.6739.83
1Mutimodal-T-SciQ_Large 🥇LLMFine-tune738M738MLink23-05-0596.8995.1695.5596.5394.7096.7996.4495.7296.18
2MC-CoT_F-Large 🥈VLMFine-tune783M-Link23-11-2397.4790.4493.1896.9793.7594.4995.3094.1394.88
3Honeybee (Vicuna-13B) 🥉VLMFine-tune13B-Link23-12-1195.2096.2991.1894.4893.7593.1795.0493.2194.39
4Enigma-COT_LargeLLMFine-tune793M793MLink23-07-2497.5184.7094.7396.6891.3795.8994.4693.4794.11
5MC-CoT_LargeVLMFine-tune738M-Link23-11-2395.4789.9991.8295.1192.6693.2494.2791.7693.37
6DPMM-CoT_LargeVLMFine-tune738M738MLink23-12-1495.5290.3391.3695.5093.2692.6893.2893.4793.35
7LLaVA (GPT-4 judge)VLMFine-tune13B13BLink23-04-1791.5696.7491.0990.6288.9993.5292.7392.1692.53
8CoMD (Vicuna-7B)VLMFine-tune7B-Link23-11-1491.8395.9588.9190.9189.9491.0892.4790.9791.94
9Mutimodal-T-SciQ_BaseLLMFine-tune223M223MLink23-05-0591.5291.4592.4591.9490.3392.2692.1191.1091.75
10Multimodal-CoT_LargeVLMFine-tune738M738MLink23-02-0295.9182.0090.8295.2688.8092.8992.4490.3191.68
11PILL (LLaMA-7B)VLMFine-tune7B45MLink23-11-0390.3695.8489.2789.3988.6591.7192.1189.6591.23
12LLaVA (ViT-L/16-224)VLMFine-tune13B-Link23-12-04--------91.2
13DPMM-CoT_BaseVLMFine-tune223M223MLink23-12-1492.7287.8589.9192.7290.4891.2991.4590.1190.97
14LLaVAVLMFine-tune13B13BLink23-04-1790.3695.9588.0089.4988.0090.6690.9390.9090.92
15LaVIN-13BVLMFine-tune13B5.4MLink23-05-2489.8894.4989.8288.9587.6191.8591.4589.7290.83
16MC-CoT_F-BaseVLMFine-tune248M-
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号