Project Icon

vit-xray-pneumonia-classification

基于ViT的胸部X光肺炎分类模型

该项目利用ViT模型对胸部X光图像进行肺炎分类,在验证集上准确率达97.42%。模型能快速区分正常和肺炎X光片,并提供简易推理代码。这一工具有助于提升肺炎诊断的效率和准确性,为医疗行业带来实际价值。

ViT-Prisma - 视觉变换器和CLIP模型机制解析开源库
GithubVision Transformer图像处理开源库开源项目机器学习解释性神经网络可视化
ViT-Prisma是一个专注于Vision Transformer和CLIP模型的开源机制解析库。它提供logit归因、注意力可视化和激活修补等技术,用于深入分析模型内部机制。该库还包含ViT训练代码和预训练模型,支持ImageNet-1k和dSprites分类任务。ViT-Prisma为视觉模型可解释性研究提供了实用的工具集。
vit_small_patch32_224.augreg_in21k_ft_in1k - Vision Transformer图像分类模型 预训练于ImageNet-21k并微调于ImageNet-1k
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
这是一个基于Vision Transformer (ViT)架构的图像分类模型,在ImageNet-21k上进行预训练,并在ImageNet-1k上微调。模型包含2290万参数,处理224x224尺寸的图像输入。通过额外的数据增强和正则化技术提升性能,最初在JAX框架中训练,后移植至PyTorch。该模型提供简洁的API,支持图像分类和特征提取两大功能,可广泛应用于多种计算机视觉任务。
wd-vit-tagger-v3 - 图像评分与标签处理的高效解决方案
DanbooruGithubHuggingfaceWD ViT Tagger开源项目标签模型训练
WD ViT Tagger v3是一个针对 Danbooru 图像数据集的开源项目,支持图像评分、角色和标签的处理。v2.0版本通过类不平衡损失缩放技术改进了模型精度;v1.1 修订 JAX 模型配置,增加图像尺寸定义;v1.0 增加训练图像和更新标签,兼容 timm 和 ONNX,对批处理大小没有固定要求,并使用 Macro-F1 衡量模型性能。
vit-base-patch16-224 - Vision Transformer图像分类模型在ImageNet数据集上的应用
GithubHuggingfaceImageNetVision Transformer图像分类开源项目机器学习模型神经网络
vit-base-patch16-224是一个基于Vision Transformer架构的图像分类模型,在ImageNet-21k数据集上预训练并在ImageNet 2012上微调。该模型采用16x16像素的图像分块和序列化处理方法,可高效处理224x224分辨率的图像。在多个图像分类基准测试中,vit-base-patch16-224展现出较好的性能,为计算机视觉任务提供了一种基于Transformer的新方案。
ViT-L-16-SigLIP-256 - 用于零样本图像分类的对比式图像文本模型
GithubHuggingfaceSigLIPWebLI对比学习开源项目模型语言图像预训练零样本图像分类
模型以WebLI数据集进行训练,兼容OpenCLIP与timm库,支持图像与文本的任务。通过SigLIP方法增强语言与图像的预训练能力,实现零样本图像分类。该模型由JAX格式转为PyTorch,更易集成至现有机器学习流程,具备多平台适应性。
man_woman_face_image_detection - ViT模型实现98.7%准确率的人脸性别识别
GithubHuggingfaceViT人脸识别图像处理开源项目性别分类机器学习模型
这个开源项目利用Vision Transformer (ViT) 模型实现人脸性别识别,准确率达98.7%。模型基于google/vit-base-patch16-224-in21k进行微调,能够根据人脸图像判断性别。项目展示了优秀的精确度和召回率,为人脸分析和用户画像等应用领域提供了有力支持。
watermark_detector - 图像水印检测模型,基于Google ViT基础模型
GithubHuggingfacewatermark_detector准确率开源项目模型训练超参数
模型通过微调谷歌的ViT基础模型,用于提高图片水印检测的准确率,在评估集上取得了0.6574的准确度。训练过程中使用了最新的Transformers和Pytorch框架,包含优化参数与学习率调度,提升了训练效率。
crossvit_9_240.in1k - 跨注意力多尺度视觉Transformer图像分类模型
CrossViTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络模型
CrossViT 9 240是IBM开发的图像分类模型,基于CrossViT架构设计。该模型在ImageNet-1k数据集上训练,参数量为8.6M,适用于240x240分辨率图像。模型采用跨注意力多尺度Vision Transformer技术,可高效提取图像特征,适用于图像分类和特征提取任务。研究人员和开发者可通过timm库使用该预训练模型进行推理或微调。
HistoSSLscaling - 病理组织图像自监督学习新方法
GithubPhikonViT开源项目掩码图像建模组织病理学自监督学习
HistoSSLscaling项目开发了基于掩码图像建模的自监督学习方法,用于病理组织图像分析。该项目的Phikon模型在4000万张全癌种病理切片上预训练,在多项下游任务中表现出色。项目提供了预训练模型、代码和数据集特征,为计算病理学研究提供支持。
cvt-13 - 融合CNN和ViT优势的创新图像分类模型
CvTGithubHuggingfaceImageNet图像分类开源项目模型深度学习视觉转换器
CvT-13是一款结合卷积神经网络(CNN)和视觉变换器(ViT)优势的图像分类模型。该模型在ImageNet-1k数据集上预训练,可处理224x224分辨率图像。CvT-13融合了CNN的局部特征提取和ViT的全局建模能力,在图像分类任务中表现出色。研究者可通过Hugging Face的transformers库轻松应用此模型于不同的图像分类项目中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号