Project Icon

wav2vec2-xlsr-persian-speech-emotion-recognition

Wav2Vec 2.0波斯语语音情感识别模型

该项目开发的Wav2Vec 2.0波斯语语音情感识别模型能够识别六种基本情绪。模型在ShEMO数据集上训练,总体准确率达90%。项目提供了完整的使用说明,包括环境配置、模型加载和预测示例代码。同时还展示了模型在各情绪类别上的性能指标,如精确率、召回率和F1分数等。

wav2vec2-large-xlsr-53-arabic - XLSR-53模型在阿拉伯语语音识别中的应用与性能
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型自动语音识别阿拉伯语
该项目基于Facebook的wav2vec2-large-xlsr-53模型,通过阿拉伯语语音数据微调,开发了一个高性能的阿拉伯语语音识别模型。在Common Voice测试集上,模型实现了39.59%的词错误率和18.18%的字符错误率,表现优于同类模型。模型支持16kHz采样率的语音输入,可直接用于阿拉伯语语音转录,无需额外语言模型。项目详细介绍了使用方法和评估结果,为阿拉伯语语音识别研究提供了有价值的参考。
wav2vec2-base-finetuned-sentiment-classification-MESD - 基于Wav2Vec2的西班牙语音情感分析模型 准确率达93%
GithubHuggingfacewav2vec2开源项目情感分析机器学习模型西班牙语语音识别
该模型是在MESD数据集上对wav2vec2-base进行微调的西班牙语音情感分析工具。经过约890条专业录音训练,模型在语音情感识别方面达到93.08%的分类准确率。适用于情感推荐系统、智能环境控制和安全监控等领域。模型在专业录音环境下表现优异,但在嘈杂背景和识别恐惧情绪时存在一定局限性。
wav2vec2-xls-r-300m-cs-250 - 高性能捷克语语音识别模型 实现精准音频转文本
GithubHuggingfaceWav2Vec2开源项目捷克语模型模型训练深度学习语音识别
这是一个基于wav2vec2-xls-r-300m的捷克语语音识别模型,经过Common Voice 8.0等多个数据集的微调。模型在测试集上达到7.3%的词错误率和2.1%的字符错误率,性能优异。它支持16kHz采样率的语音输入,无需额外语言模型即可直接使用。项目提供了简洁的使用示例,并详细记录了训练过程和评估指标。
wav2vec2-large-xlsr-53 - 突破性多语言语音识别模型 适用低资源语言场景
GithubHuggingfaceWav2Vec2-XLSR-53多语言模型开源项目模型深度学习语音识别预训练模型
Wav2Vec2-XLSR-53是一款基于wav2vec 2.0架构的多语言语音识别模型。该模型通过在53种语言的原始音频上预训练,学习跨语言语音表示。在CommonVoice和BABEL等基准测试中,Wav2Vec2-XLSR-53显著优于单语言模型,特别适合低资源语言的语音识别任务。这一开源项目为研究人员提供了强大工具,有助于推动低资源语言语音理解的进展。
bert-fa-base-uncased-sentiment-deepsentipers-binary - 波斯语情感分析优化:ParsBERT v2.0项目
DeepSentiPersDigikalaGithubHuggingfaceParsBERTSnappFood开源项目情感分析模型
该项目专注于ParsBERT v2.0在波斯语情感分析中的表现,通过更新词汇表和微调训练数据集,如Digikala、SnappFood和DeepSentiPers,实现文本情感的多类别及二元分类测试,其中去除了中性类别。ParsBERT v2在测试中展现出优秀的性能,为研究人员提供了有效的工具。用户可访问相关链接下载数据集,并通过文档获取更详细的使用说明和项目动态。
wav2vec2-hausa2-demo-colab - wav2vec2-large-xlsr-53 微调的 Hausa 语音识别模型
GithubHausa语Huggingfacewav2vec2开源项目模型深度学习自然语言处理语音识别
wav2vec2-large-xlsr-53 模型在 Common Voice 数据集上微调,专门用于 Hausa 语音识别。模型在评估集上达到 0.7237 的词错误率,为 Hausa 语音识别提供了基础解决方案。尽管训练细节有限,但采用了 Adam 优化器和混合精度训练等先进技术,为进一步改进奠定了基础。这个开源的 Hausa 语音识别模型可用于语音转文本、语言学研究或开发针对 Hausa 语言的语音应用。它展示了迁移学习在低资源语言处理中的潜力,为非洲语言技术的发展贡献力量。
wav2vec2-xls-r-300m-hebrew - XLS-R微调的希伯来语语音识别模型
GithubHebrewHuggingfaceWav2Vec2XLS-R开源项目微调模型语音识别
该开源项目提供了一个针对希伯来语优化的语音识别模型。基于wav2vec2-xls-r-300m架构,通过两阶段训练方法在私有数据集上进行微调。模型在测试集上实现23.18%的词错误率,展示了特定语言语音识别优化的有效途径。这一模型为希伯来语自动语音识别研究和应用提供了实用工具。
wav2vec2-xls-r-1b - 大规模多语言语音预训练模型支持128种语言处理
GithubHuggingfaceXLS-R多语言模型开源项目模型语音处理语音识别预训练
Wav2Vec2-XLS-R-1B是Facebook AI开发的大规模多语言语音预训练模型,拥有10亿参数。该模型在436K小时的公开语音数据上训练,涵盖128种语言。在CoVoST-2语音翻译基准测试中平均提升7.4 BLEU分,BABEL等语音识别任务错误率降低20%-33%。适用于语音识别、翻译和分类等任务,需要16kHz采样率的语音输入进行微调。
wav2vec2-large-nonverbalvocalization-classification - Nonverbal Vocalization分类的Wav2vec2模型扩展语音识别应用
GithubHuggingfacewav2vec2准确率声纹识别开源项目模型非语言发声音频分类
该模型利用Nonverbal Vocalization数据集,基于wav2vec2架构,进行非语言声带的分类。可识别诸如咬牙、咳嗽、打哈欠、哭泣等声音分类。Wav2vec2模型不仅提升了语音识别的准确性,还增强了在多语言及多声学场景中的应用。该模型支持简单的部署与系统集成,优化了语音交互的体验。
wav2vec2-xls-r-300m-cv7-turkish - 基于Wav2vec2优化的土耳其语语音识别模型
Common VoiceGithubHuggingfacewav2vec2-xls-r-300m土耳其语开源项目机器学习模型模型语音识别
该模型是在wav2vec2-xls-r-300m基础上针对土耳其语优化的自动语音识别系统。通过Common Voice 7和MediaSpeech数据集训练,结合N-gram语言模型,在Common Voice 7测试集上实现8.62%词错误率和2.26%字符错误率。模型为土耳其语语音识别提供了高效可靠的开源解决方案,适用于多种语音识别场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号