Project Icon

nnom

适用于微控制器的神经网络库

NNoM 是为微控制器设计的高层次神经网络推理库,支持如 Inception、ResNet 和 DenseNet 等复杂结构,可一键部署 Keras 模型并提供用户友好的界面。其高性能后端选择和预编译功能确保了运行时零损耗,同时提供完整的评估工具如运行时分析和混淆矩阵。最新的 v0.4.x 版本新增了循环层(RNN)支持,并切换到更适合机器处理的结构化接口。与 TensorFlow Lite 和 STM32Cube.AI 的对比显示,NNoM 在推理时间和内存占用方面表现出色。

mmengine - 深度学习训练引擎支持大规模模型训练和多种策略
GithubMMEngineOpenMMLabPyTorch开源项目深度学习训练引擎
MMEngine是基于PyTorch的深度学习模型训练基础库,作为OpenMMLab代码库的训练引擎。它集成主流大规模模型训练框架,支持混合精度训练等多种策略,提供友好的配置系统和主流监控平台支持。MMEngine不仅适用于OpenMMLab项目,还可广泛应用于其他深度学习项目。
Awesome-Deep-Neural-Network-Compression - 深度神经网络压缩技术资源库
GithubNAS剪枝开源项目模型优化深度神经网络压缩知识蒸馏量化
该项目汇集了深度神经网络压缩的综合资源,包括量化、剪枝和蒸馏等技术的论文、总结和代码。涵盖高效模型设计、神经架构搜索等相关主题,并提供按会议和年份分类的论文列表。项目还收录了主流压缩系统和工具链接,为深度学习模型压缩研究提供了全面的参考资料。
rknn-cpp-Multithreading - RK3588/RK3588S多线程NPU推理加速框架
GithubNPURK3588RKNNYOLOv5多线程开源项目
rknn-cpp-Multithreading项目提供了一个针对RK3588/RK3588S的多线程NPU推理加速框架。通过线程池异步操作rknn模型,显著提高了NPU使用率和推理速度。项目优化了YOLOv5s模型,采用ReLU激活函数,进一步提升了性能。提供了详细的使用说明和不同线程数下的性能测试结果,便于用户参考和应用。
tract - 神经网络推理工具,支持多种格式与优化
GithubNNEFONNXTensorFlowtract开源项目神经网络推理
`tract`是一款神经网络推理工具,支持读取和优化ONNX与NNEF格式。它提供多种神经网络模型的支持,并附有详尽的技术文档和应用实例,适用于移动设备和微控制器等多种应用场景。
VanillaNet - 高效简约的深度学习神经网络架构
GithubVanillaNet开源项目模型效率深度学习神经网络计算机视觉
VanillaNet是一种创新的神经网络架构,专注于简洁性和效率。它摒弃了复杂的快捷连接和注意力机制,仅使用较少的层数就能保持出色的性能。该项目展示了精简架构也能实现有效结果,为计算机视觉领域开辟了新路径,挑战了基础模型的现状。与主流模型相比,VanillaNet在保持相当性能的同时,具有更少的层数和更快的推理速度。
nn_vis - 创新3D可视化技术助力神经网络分析
3D可视化技术Github开源项目批量归一化神经网络可视化边缘捆绑重要性估计
该项目开发了一种创新的3D神经网络可视化技术。通过批量归一化、微调和特征提取,估算网络各部分重要性。结合边缘捆绑、光线追踪等方法,构建神经网络的3D表示模型。这一技术验证了重要性估计的有效性,并为深入理解复杂神经网络架构开辟了新途径。
Neuralhub - 一体化神经网络开发与协作环境
AI工具AI研究Neuralhub协作平台深度学习神经网络
Neuralhub是面向AI爱好者、研究人员和工程师的一站式深度学习平台。它提供简化的神经网络开发环境,集成了从头构建网络的工具、丰富的预设组件库和高质量预训练模型。作为人工智能创新中心,Neuralhub不仅支持实验和技术突破,还培育了活跃的知识共享与协作社区。通过整合先进工具、前沿研究成果和海量模型资源,Neuralhub致力于让AI研究、学习和开发更加便捷高效,推动深度学习技术的普及与进步。
NeuroCraft - 简化神经网络开发流程的直观平台
AI工具人工智能模型训练模型设计模型部署神经网络
NeuroCraft是一个创新的神经网络开发平台,提供设计、训练和部署神经网络的综合解决方案。该平台采用简洁的拖放界面,简化模型设计过程,支持实时观察模型学习并灵活配置训练参数。NeuroCraft还提供多样化的部署选项,方便将模型集成到现有系统或用于应用内预测。这个平台适合各级人工智能从业者使用,有助于高效管理神经网络的全生命周期。
Efficient-Deep-Learning - 深度神经网络压缩和加速方法综述
Github开源项目权重量化模型加速知识蒸馏神经网络压缩网络剪枝
此项目汇总了深度神经网络压缩和加速的多种方法,涵盖神经架构设计、剪枝、量化、矩阵分解和知识蒸馏等技术。重点介绍了剪枝(含彩票假设)、知识蒸馏和量化等领域的研究进展,并提供了大量相关论文摘要。项目还收录了初始化剪枝和高效视觉Transformer等相关资源,为该领域的研究和开发提供了全面参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号