Project Icon

mars

多库支持的张量计算框架

Mars是一种基于张量的统一框架,支持大规模数据计算,兼容Numpy、Pandas、Scikit-learn等多个库。无论是单机还是集群环境,Mars都能简化数据处理工作。它提供了详细的安装指南、架构概览和多种使用模式,并与TensorFlow、PyTorch等库深度集成,显著提升计算效率。更多安装和使用信息,请参阅文档。

marvin - 多功能AI工具包,提供文本、图像与音频处理功能
AI工具包GithubMarvin分类实体提取开源项目数据生成
Marvin是一个轻量级AI工具包,提供可靠、可扩展的自然语言接口解决方案。它涵盖文本、图像和音频的生成、分类、实体抽取等多种功能,支持独立或组合使用,适用于各种开发场景。Marvin无需复杂的代码,即可将AI功能集成到现有软件项目中,实现快速部署。该项目开源且免费使用,由Prefect团队开发和维护。
pandas - Python数据分析与处理的开源利器
DataFrameGithubPythonpandas开源开源项目数据分析
pandas是Python生态系统中的核心数据分析库,提供高性能、易用的数据结构和工具。它支持处理结构化数据,包括数据清洗、转换、合并、分组分析等操作。pandas可读写多种格式的数据源,如CSV、Excel、SQL数据库等。作为开源项目,pandas由活跃社区维护,持续优化以满足数据科学家、分析师和开发者的需求。
max - 一套集成的AI库、工具和技术
AIGithubMAX工具链开源项目推理硬件可移植性
MAX平台是一套集成的AI库、工具和技术,统一了分散的AI部署工作流。通过提供单一开发工具链,MAX显著缩短了创新产品的上市时间,同时具备完全编程能力、卓越的性能和顺畅的硬件兼容性。文档、代码示例和Jupyter笔记本等资源可帮助用户快速起步,并提供社区支持和交流。
meerkat - 专为可视化、探索和注释各类数据集而设计的开源Python库
GithubMeerkat开源库开源项目数据可视化未结构化数据机器学习模型
Meerkat是一个开源的Python库,专为可视化、探索和注释各类数据集而设计,特别适合处理非结构化数据类型(如文本、PDF、图像和视频)。Meerkat支持与Pandas、Arrow和HF Datasets无缝整合,无需数据移动。用户能够使用简洁的Python代码嵌入机器学习模型,实现搜索、分组和自动完成等功能。借助Meerkat的高度定制化可视化组件,适用于探索性数据分析和快速验证数据标注等多种应用场景。
marlin - 专为LLM推理设计的FP16xINT4优化内核
CUDAFP16xINT4GithubMarlinNVIDIA GPU开源项目高效推理
Marlin是一款专为LLM推理设计的FP16xINT4优化内核,可实现接近4倍的速度提升,并支持16-32个token的batchsize。通过高效利用GPU资源,如全局内存、L2缓存、共享内存和张量核心,Marlin克服了现代GPU的FLOP和字节比率挑战。多种优化技术包括异步权重加载和双缓冲共享内存加载,确保性能最大化。该项目适用于CUDA 11.8及以上版本,支持NVIDIA Ampere或Ada架构的GPU,并与torch 2.0.0和numpy兼容。在各种基准测试中,Marlin展示了卓越的性能,尤其在持久计算和大batchsize处理方面表现出色。
multi-model-server - 深度学习模型的部署工具
DockerGithubMulti Model ServerPython开源项目模型服务深度学习
Multi Model Server是一个灵活的工具,用于部署由各种ML/DL框架训练的深度学习模型。通过命令行界面或预配置的Docker镜像,可以快速设置HTTP端点处理模型推理请求。支持Python 2.7和3.6,提供适合CPU和GPU推理的不同MXNet pip包。详细的文档和使用示例,以及Slack频道和社区支持,进一步简化了用户使用体验。推荐在生产环境中使用Docker容器以提升安全性和性能。
petastorm - 开源数据访问库,支持单机或分布式训练和评估深度学习模型,直接从Apache Parquet格式数据集中读取数据
Apache ParquetGithubPetastorm分布式训练开源项目机器学习框架深度学习
Petastorm是一个开源数据访问库,支持单机或分布式训练和评估深度学习模型,直接从Apache Parquet格式数据集中读取数据。该库兼容Tensorflow、PyTorch和PySpark等主流Python机器学习框架,也可用于纯Python代码。Petastorm支持多种数据压缩格式,提供方便的API用于数据生成和读取,并支持列选择、并行读取、行过滤等功能。用户可以轻松在单机或Spark集群上生成数据集,是构建高效机器学习管道的理想工具。
neptune-client - 可伸缩的实验跟踪工具,简化团队基础模型训练
Githubneptune.ai实验跟踪开源项目数据处理机器学习模型训练
Neptune 提供一款高效实验跟踪平台,适用于团队基础模型训练。用户可记录大量运行数据,实时对比实验结果。其灵活日志记录、自定义仪表板、多节点支持,加速训练监控和优化。支持25+框架集成,是MLOps理想工具。
Mava - 基于JAX的高效多智能体强化学习框架
GithubJAXMava分布式计算多智能体强化学习开源项目环境包装器
Mava是基于JAX的分布式多智能体强化学习框架,提供精简代码实现和快速迭代工具。它集成了MARL算法、环境封装、教学资源和评估方法,充分利用JAX并行计算优势,在多个环境中实现卓越性能和训练速度。Mava设计简洁易懂,便于扩展,适合MARL研究人员和实践者使用。
awesome-python-data-science - Python数据科学资源集合,详解机器学习与深度学习工具
GithubPython工具库开源项目数据科学机器学习深度学习
该项目收集了全面的Python数据科学资源,包括机器学习、深度学习、自动化机器学习、自然语言处理、计算机视觉、时间序列分析和强化学习等领域的开源库。从通用型机器学习算法到深度学习框架(如PyTorch和TensorFlow),再到特征工程和数据可视化,用户可以找到适用于各种数据分析和建模需求的工具。项目旨在帮助数据科学家和工程师高效选择工具,以提高开发和分析效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号