Project Icon

torchcrepe

PyTorch实现的CREPE音高追踪算法

torchcrepe是CREPE音高追踪算法的PyTorch实现,提供音高预测、周期性分析和音频嵌入功能。该项目支持多种解码方法、滤波和阈值处理,可用于语音和音乐分析。torchcrepe还包含文件处理和命令行接口,便于进行音高相关的音频处理。

crepe - 基于深度卷积神经网络的单音音高跟踪器
CREPEGithubPython开源项目深度卷积神经网络音频处理音高跟踪
CREPE是一款基于深度卷积神经网络的单音音高跟踪器,直接处理时域波形输入,性能优于流行的音高跟踪器如pYIN和SWIPE。用户可通过PyPI安装,并利用预训练模型进行音高预测,结果包含时间戳、预测音高和置信度。CREPE支持时间步长调整、模型容量选择和时间序列平滑,适用于人声和乐器音频,并支持批量处理。
pesto - 基于机器学习的高效音高估计开源工具
GithubPESTOPyTorch命令行界面开源项目机器学习音高估计
PESTO是一个开源的音高估计工具,基于机器学习技术开发。该项目获得ISMIR 2023最佳论文奖,具有出色的性能和快速的处理速度。PESTO支持多种音频格式,提供命令行和Python API接口,便于集成使用。与CREPE相比,PESTO的模型参数更少,但在主要数据集上表现相当。适用于需要高效音高估计的音频处理应用。
nnAudio - 基于PyTorch的快速GPU音频处理工具箱
GPUGithubPyTorchnnAudio开源项目音频处理频谱图
nnAudio是一款基于PyTorch的音频处理工具箱,利用卷积神经网络实现实时频谱图生成和傅里叶核心训练。它具备跨平台兼容性、可训练性和可微分性,支持STFT、梅尔频谱、MFCC、CQT等多种音频处理功能。相比传统工具,nnAudio在GPU上提供更高效的音频分析和处理方案。
WaveRNN - 高效神经音频合成技术
GithubPytorchTTSTacotronWaveRNN开源项目语音合成
WaveRNN通过Pytorch实现了Deepmind的高效神经音频合成技术,并包含Tacotron训练支持, 提供两种预训练模型。项目向研究者和开发者开放,并附有详细使用指南与多样化的自定义功能,以便进行高质量的文本到语音转换。
iSTFTNet-pytorch - 轻量级Mel频谱声码器
GithubMel-spectrogramVocoderiSTFTNet声音合成开源项目轻量级
iSTFTNet,一款结合逆短时傅里叶变换的Mel频谱声码器,训练速度较传统hifigan快30%,性能超前60%。以C8C8I模型为核心,优化声音质量和处理速度,适配快速高效的语音处理需求。虽主要为技术测试和验证,其音质和处理速度的优势已得到实证。
vocal-remover - 使用深度学习的开源伴奏提取工具
GithubPyTorchvocal-remover开源项目模型训练深度学习音源分离
这款基于深度学习的开源工具可以从歌曲中提取伴奏。用户能够下载最新版本并安装相关的要求包,通过简单命令将音轨分离为伴奏和人声轨道。支持在CPU和GPU上运行,并提供诸如Test-Time-Augmentation和后处理等高级选项以提升分离质量。项目同样允许用户使用自己的数据集训练模型,非常适用于需要高质量音频源分离的应用。
deepvoice3_pytorch - 基于卷积网络的文本到语音合成技术
DeepVoice3GithubPyTorch多说话者模型开源项目文本转语音预训练模型
DeepVoice3_pytorch是基于PyTorch的文本到语音深度学习平台,支持多语种和多数据集,包括英语、日语和韩语,适合多个说话者或单个说话者。项目提供预训练模型、音频样本、在线演示及详尽的训练指南,旨在简化用户的使用过程,并能灵活定制个性化的语音合成应用。
audiolm-pytorch - 基于Pytorch的音频生成模型AudioLM
AudioLMEnCodecGithubPytorchSoundStream开源项目音频生成
AudioLM是一个基于Pytorch的音频生成模型,具有T5引导的文本到音频转换功能。该项目还兼容SoundStream和Facebook的EnCodec,并提供了多个音频编码和解码模块。用户可以通过完整的训练和使用流程,包括SoundStream、分层Transformer和基于文本条件的音频合成,来进行音频生成技术的研究和开发。
SoundStorm - 并行音频生成技术探索的非官方PyTorch实现
GithubSoundStorm并行处理开源项目深度学习语音合成音频生成
SoundStorm是一个基于谷歌研究的并行音频生成项目的非官方PyTorch实现。该项目采用掩码离散扩散方法,使用HuBERT提取语义并预测声学特征。与原版不同,本实现创新性地使用浅层U-Net组合码本。项目提供完整的数据准备、训练和推理指南,为研究人员提供了探索并行音频生成技术的实用框架。
dasp-pytorch - 基于PyTorch的可微分音频信号处理器库
GithubPyTorch信号处理开源项目深度学习神经网络音频处理
dasp-pytorch是一个基于PyTorch的可微分音频信号处理库。它实现了混响、失真、动态范围处理、均衡和立体声处理等功能,可用于虚拟模拟建模、参数估计、自动DSP和风格迁移。该库支持CPU和GPU批处理,有助于加速训练和优化性能。作为开源项目,dasp-pytorch在Apache 2.0许可下可免费用于学术和商业目的。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号