Project Icon

LLaVA-pp

结合先进模型的视觉能力扩展与演示

LLaVA-pp项目整合了Phi-3 Mini Instruct和LLaMA-3 Instruct模型,提升了视觉模型的能力。用户可通过Hugging Face Spaces和在线演示了解LLaMA-3-V和Phi-3-V的更新和结果。项目包含多种预训练及微调模型,支持学术任务和指令跟随应用。

llama3-llava-next-8b-hf - LLaVA-NeXT:Llama 3驱动的多模态AI模型
GithubHuggingfaceLLaVA-NeXT图像处理多模态开源项目模型深度学习自然语言处理
LLaVA-NeXT是一个基于Llama 3的多模态AI模型,整合了预训练语言模型和视觉编码器。通过高质量数据混合和强化语言骨干网络,该模型在图像描述、视觉问答和多模态对话等任务中表现出色。LLaVA-NeXT支持Python接口,并提供4位量化和Flash Attention 2优化,以提升性能和效率。作为开源项目,LLaVA-NeXT为研究人员和开发者提供了探索多模态AI的有力工具。
Llama-3.2-11B-Vision-Instruct - 高效训练和部署具有多语言能力的大规模语言模型
GithubHuggingfaceLlama 3.2MetaUnsloth大语言模型开源项目模型模型微调
Llama-3.2-11B-Vision-Instruct是Meta开发的多语言大规模视觉语言模型,具备强大的对话和图像理解能力。该项目采用Unsloth技术,实现训练速度提升2.4倍,内存使用减少58%。模型支持英语、德语、法语等多种语言,适用于对话、检索、摘要等任务。项目提供简单易用的Colab笔记本,方便开发者进行模型微调和部署。Llama-3.2系列在多项行业基准测试中表现出色,超越了许多开源和闭源的对话模型。
VisionLLaMA - 基于LLaMA的统一视觉模型,为图像生成和理解设立新基准
GithubVisionLLaMA图像理解图像生成开源项目计算机视觉预训练模型
VisionLLaMA是一个基于LLaMA架构的统一视觉Transformer模型,专为处理2D图像而设计。该模型提供平面和金字塔两种形式,适用于广泛的视觉任务,包括图像感知和生成。通过各种预训练范式的广泛评估,VisionLLaMA在多项图像生成和理解任务中展现出卓越性能,超越了现有最先进的视觉Transformer模型,为计算机视觉领域提供了新的基准。
ViP-LLaVA - 改进大型多模态模型的视觉提示理解能力
CVPR2024GithubViP-LLaVA多模态模型开源项目视觉提示视觉语言模型
ViP-LLaVA项目旨在提升大型多模态模型对任意视觉提示的理解能力。通过在原始图像上叠加视觉提示进行指令微调,该方法使模型能更好地处理多样化的视觉输入。项目还开发了ViP-Bench,这是首个零样本区域级基准,用于评估多模态模型性能。ViP-LLaVA提供完整的训练流程、模型权重和演示,为视觉语言模型研究提供了有力支持。
nanoLLaVA - 轻量级视觉语言模型实现边缘设备高效部署
GithubHuggingfacenanoLLaVA人工智能多模态开源项目机器学习模型视觉语言模型
nanoLLaVA是一款1B级视觉语言模型,结合Quyen-SE和SigLIP视觉编码器技术。该模型在VQA v2和TextVQA等视觉问答测试中表现优异,同时优化了在边缘设备上的运行效率。nanoLLaVA采用ChatML标准,支持图像描述和视觉问答功能,并提供简洁的API接口,方便开发者集成到不同应用场景。
Llama-3.2-11B-Vision-Instruct-FP8-dynamic - Meta-Llama视觉语言模型FP8量化版支持多语言部署
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型视觉识别量化压缩
基于Meta-Llama-3.2架构的视觉语言模型,通过FP8动态量化技术实现模型压缩,在保持原有性能的同时将显存需求降低50%。模型支持图文输入和多语言输出,可通过vLLM实现快速部署,提供OpenAI兼容接口,适合商业场景应用。
Llama-3.2-11B-Vision - Meta开发的多模态大语言模型 支持视觉识别和图像推理
GithubHuggingfaceLLAMA 3.2多模态模型开源项目机器学习模型自然语言处理计算机视觉
Llama-3.2-11B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入、文本输出。该模型在视觉识别、图像推理、图像描述和通用图像问答方面表现出色。它基于Llama 3.1文本模型构建,采用优化的Transformer架构,通过监督微调和人类反馈强化学习进行对齐。模型支持128K上下文长度,经过60亿(图像,文本)对训练,知识截止到2023年12月。Llama-3.2-11B-Vision为商业和研究用途提供视觉语言处理能力。
LLaVA-NeXT - 大规模开源多模态模型提升视觉语言能力
AI助手GithubLLaVA-NeXT多模态模型大语言模型开源项目视觉语言模型
LLaVA-NeXT是一个开源的大规模多模态模型项目,致力于提升视觉语言交互能力。该项目支持多图像、视频和3D任务的统一处理,在多个基准测试中表现卓越。LLaVA-NeXT提供了多个模型变体,包括支持高分辨率输入和视频处理的版本,以及基于不同大语言模型的实现。此外,项目还开源了训练数据和代码,为研究人员和开发者提供了宝贵资源。
Visual-Chinese-LLaMA-Alpaca - 多模态中文模型VisualCLA开发与优化技术
CLIP-ViTChinese-Alpaca-PlusGithubLLaMAVisual-Chinese-LLaMA-Alpaca多模态模型开源项目
VisualCLA基于中文LLaMA/Alpaca模型,增加图像编码模块,实现图文联合理解和对话能力。目前发布测试版,提供推理代码和部署脚本,并展示多模态指令理解效果。未来将通过预训练和精调优化,扩展应用场景。
Llama-3.2-90B-Vision-Instruct-FP8-dynamic - 基于Meta-Llama架构的FP8量化多语言视觉对话模型
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型模型量化视觉语言模型
这是一个基于Meta-Llama-3.2架构开发的视觉语言模型,包含900亿参数。通过FP8量化技术优化,将模型存储空间和GPU内存需求降低约50%。模型支持图像理解和多语言文本生成,主要应用于智能对话系统。借助vLLM后端可实现高效部署和OpenAI兼容服务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号