Project Icon

Video-LLaVA

视频多模态模型,具备像素级定位能力

PG-Video-LLaVA通过模块化设计,首次实现视频多模态模型具备像素级定位能力。该框架使用现成的追踪器和创新的定位模块,能够根据用户指令在视频中实现空间定位。引入新的基准测试用于评估基于提示的对象定位性能,并结合音频上下文完善视频内容理解,提高在对话和新闻视频等场景中的适用性。改进的定量基准测试确保更高的透明度和可重复性。

llava-1.5-13b-hf - 基于Llama 2的多模态视觉语言模型集成图像理解与对话功能
GithubHuggingfaceLLaVA图像理解多模态对话开源项目机器学习模型自然语言处理
llava-1.5-13b-hf作为开源多模态模型整合了Llama 2架构,实现图像理解和自然语言对话功能。模型通过transformers库实现多图像处理和多提示生成,并集成4位量化与Flash-Attention 2优化方案提升运行效率。在图像描述、视觉问答等任务中表现出色,体现了视觉语言模型的技术创新。
VTimeLLM - 创新视频大语言模型实现精准时刻理解
GithubVTimeLLM多阶段训练大语言模型开源项目时间边界感知视频理解
VTimeLLM是一种先进的视频大语言模型,专注于精细化视频时刻理解和推理。该模型采用边界感知三阶段训练策略,包括图像-文本特征对齐、多事件视频时间边界识别和高质量视频指令微调。这种方法显著提升了模型的时间理解能力,使其在多项视频理解任务中表现优异。
ViP-LLaVA - 改进大型多模态模型的视觉提示理解能力
CVPR2024GithubViP-LLaVA多模态模型开源项目视觉提示视觉语言模型
ViP-LLaVA项目旨在提升大型多模态模型对任意视觉提示的理解能力。通过在原始图像上叠加视觉提示进行指令微调,该方法使模型能更好地处理多样化的视觉输入。项目还开发了ViP-Bench,这是首个零样本区域级基准,用于评估多模态模型性能。ViP-LLaVA提供完整的训练流程、模型权重和演示,为视觉语言模型研究提供了有力支持。
llava-1.5-7b-hf - 基于Llama 2的多模态AI模型 实现图像理解与对话
GithubHuggingfaceLLaVATransformers图像文本生成多模态开源项目模型模型优化
LLaVA-1.5-7B是一个基于Llama 2架构的开源多模态视觉语言模型。通过指令微调,该模型实现了图像理解和对话能力,支持多图像输入和多轮对话。LLaVA-1.5-7B可应用于图像问答、视觉推理等任务,并提供便捷的pipeline接口。模型支持4比特量化和Flash Attention 2优化,可在普通GPU上高效运行。这为研究人员和开发者提供了一个功能强大的视觉语言AI工具。
vip-llava-7b-hf - 基于自然视觉提示的多模态语言模型
AI聊天机器人GithubHuggingfaceViP-LLaVA图像识别多模态AI开源项目模型视觉语言处理
VipLLaVA在LLaVA基础上引入自然视觉提示训练机制,通过边界框和指向箭头等视觉标记增强模型的图像理解能力。作为基于Transformer架构的多模态模型,VipLLaVA支持多图像输入和复杂视觉查询处理。该模型通过微调LLaMA/Vicuna实现,可集成到transformers库中实现图像文本交互,并支持4位量化和Flash Attention 2优化部署。
llava-v1.5-7b - 融合视觉与语言的开源多模态AI模型
GithubHuggingfaceLLaVA人工智能图像文本理解多模态模型开源项目模型自然语言处理
LLaVA-v1.5-7B是一个开源的多模态AI模型,通过微调LLaMA/Vicuna实现。该模型整合了视觉和语言处理能力,能够理解图像并进行自然语言对话。LLaVA-v1.5-7B在大规模数据集上训练,包括558K图文对和158K多模态指令数据,并在12个基准测试中表现优异。这个模型主要应用于多模态大模型和聊天机器人的研究,适用于计算机视觉、自然语言处理等领域的研究人员。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
videollm-online - 流式视频实时理解与交互的先进模型
GithubVideoLLM-online大语言模型实时交互开源项目流媒体视频视频处理
VideoLLM-online是一款针对流媒体视频的在线大语言模型。该模型支持视频流实时交互,可主动更新响应,如记录活动变化和提供实时指导。项目通过创新的数据合成方法将离线注释转化为流式对话数据,并采用并行化推理技术实现高速处理,在A100 GPU上处理速度可达10-15 FPS。VideoLLM-online在在线和离线环境中均表现出色,能高效处理长达10分钟的视频,为视频理解与交互领域带来新的可能性。
llava-onevision-qwen2-0.5b-ov-hf - 推动单图、多图和视频理解的多模态大语言模型
GithubHuggingfaceLLaVA-Onevision图像理解多模态语言模型开源项目模型视频理解计算机视觉
LLaVA-Onevision是基于Qwen2的多模态大语言模型,通过微调GPT生成的多模态指令数据训练而成。作为首个同时推动单图、多图和视频场景性能边界的模型,它展现出强大的视频理解和跨场景能力,实现了从图像到视频的任务迁移。该模型支持多图像和多提示生成,为多样化的视觉理解任务提供了灵活解决方案。
llava-llama-3-8b-v1_1-gguf - 基于Llama-3的8B参数多模态模型实现图文交互
GithubHuggingfaceLLaVAXTuner图像理解大模型微调开源项目模型视觉语言模型
这是一个基于Llama-3和CLIP视觉模型构建的多模态系统,采用GGUF格式优化部署效率。模型在MMBench、CCBench等多个基准测试中展现了优秀的图像理解和文本生成能力。通过ollama或llama.cpp框架,可实现快速本地部署和图文交互功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号