Project Icon

flair-arabic-multi-ner

阿拉伯语命名实体识别模型实现86%准确率

这个阿拉伯语命名实体识别模型能够自动识别文本中的地点、组织机构和人名等实体信息。模型采用深度学习方法训练,识别准确率达到86%,已开源并支持Python环境使用。适合于阿拉伯语自然语言处理、信息提取等应用场景。

ner-german-large - Flair框架驱动的德语大规模命名实体识别模型
FlairGithubHuggingfaceNER开源项目德语命名实体识别机器学习模型自然语言处理
这是一个基于Flair框架的德语大规模命名实体识别(NER)模型。它可识别人名、地名、组织名和其他名称四类实体。模型结合了文档级XLM-R嵌入和FLERT技术,在CoNLL-03德语修订版数据集上获得92.31的F1分数。研究者可通过Flair库轻松调用此模型进行NER任务。项目同时提供了使用示例和训练脚本,便于进一步开发和优化。
ner-english-ontonotes-large - Flair框架的大规模英语命名实体识别模型支持18种实体类型
FlairGithubHuggingface命名实体识别开源项目文本分类机器学习模型自然语言处理
ner-english-ontonotes-large是Flair框架中的大规模英语命名实体识别模型。该模型可识别18种实体类型,包括人名、地点和组织等,在Ontonotes数据集上F1分数达90.93%。模型基于文档级XLM-R嵌入和FLERT技术,通过简洁的Python代码即可调用。这一工具为各类自然语言处理任务提供了精准的命名实体识别功能。
flair - 一个易用的最先进自然语言处理和文本嵌入框架,支持多语言模型应用
FlairGithubPyTorch开源项目情感分析文本嵌入自然语言处理
Flair 是一个强大的自然语言处理库,支持命名实体识别、情感分析、词性标注等多种功能,并且支持多种语言。通过简易接口,用户可以轻松使用和整合多种词和文档嵌入,基于 PyTorch 框架进行模型训练和实验。Flair 还对生物医学文本有特殊支持,并提供最新的命名实体识别模型,性能媲美甚至超过当前最优结果。用户可以在 Hugging Face 平台上访问并试用这些模型。
ner-dutch-large - 荷兰语命名实体识别模型,支持4类实体标签
FlairGithubHuggingfaceNERXLM-R命名实体识别开源项目模型荷兰语
该项目提供一个荷兰语命名实体识别模型,应用于Flair和XLM-R嵌入,支持识别地点、人物等四类标签,F1得分为95.25。通过Python代码示例,展示实际文本的实体识别过程;同时,项目包含完整的训练脚本,帮助用户创建定制化识别任务。
AraBert-Arabic-Sentiment-Analysis - 基于AraBERT的阿拉伯语情感分析模型实现80%分类准确率
AraBERTGithubHuggingface开源项目情感分析机器学习模型自然语言处理阿拉伯语情感分析
基于AraBERT预训练模型微调的阿拉伯语情感分析模型,在评估数据集上实现了80.03%的准确率和65.43%的宏F1分数。模型采用Adam优化器和线性学习率调度器,使用16的训练批次大小,经过2轮训练得到。基于Transformers框架开发,专注于阿拉伯语文本的情感分类任务。
bert-base-arabic-camelbert-msa-ner - 现代标准阿拉伯语命名实体识别增强
CAMeLBERTCamel工具GithubHuggingface命名实体识别开源项目模型阿拉伯语模型预训练语言模型
项目基于CAMeLBERT模型提升现代标准阿拉伯语的命名实体识别性能,使用ANERcorp数据集进行微调以提高精度。可通过CAMeL Tools组件或transformers管道实现多用例应用。
hunflair2-ner - 基于Flair的生物医学实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目文本分析模型自然语言处理
HunFlair2-NER是一个面向生物医学领域的命名实体识别模型,基于Flair框架开发。模型可识别文本中的生物医学实体,包括基因、疾病和化合物等。基于PrefixedSequenceTagger架构,集成SciSpacy分词功能,适用于生物医学文献分析、临床报告处理等场景。支持Python环境快速部署集成。
xlm-roberta-large-ner-hrl - 十种多语言命名实体识别模型,覆盖高资源语言
GithubHuggingfacexlm-roberta-large-ner-hrl命名实体识别多语言开源项目数据集模型模型训练
此模型是基于xlm-roberta-large微调的命名实体识别模型,支持十大高资源语言:阿拉伯语、德语、英语、西班牙语、法语、意大利语、拉脱维亚语、荷兰语、葡萄牙语和中文。具备识别地点、组织和人物三类实体的功能。通过Transformers库的pipeline,可便捷地应用于NER任务。训练数据来自特定时间段的新闻文章,虽然适用于多种场景,但在不同领域的推广性有限。
bert-base-turkish-cased-ner - 土耳其语BERT命名实体识别模型实现99.61%准确率
BERTGithubHuggingface命名实体识别土耳其语言模型开源项目模型模型训练自然语言处理
该项目提供了一个基于BERT的土耳其语命名实体识别模型。通过使用精选的土耳其NER数据集进行微调,模型能够识别人名、组织机构和地点等实体。在多个测试集上,模型展现出优异性能,总体F1分数为96.17%,准确率达99.61%。项目还提供了简洁的使用接口,便于集成到各种土耳其语自然语言处理任务中。
distilbert-base-multilingual-cased-ner-hrl - DistilBERT微调的10语种命名实体识别模型
DistilBERTGithubHugging FaceHuggingface命名实体识别多语言模型开源项目模型自然语言处理
这是一个基于DistilBERT微调的多语言命名实体识别模型,支持10种高资源语言。模型能够识别位置、组织和人名实体,适用于阿拉伯语、德语、英语等多种语言。它使用各语言的标准数据集训练,可通过Transformers库轻松调用。尽管在多语言NER任务中表现优秀,但在特定领域应用时可能存在局限性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号