Project Icon

flair-arabic-multi-ner

阿拉伯语命名实体识别模型实现86%准确率

这个阿拉伯语命名实体识别模型能够自动识别文本中的地点、组织机构和人名等实体信息。模型采用深度学习方法训练,识别准确率达到86%,已开源并支持Python环境使用。适合于阿拉伯语自然语言处理、信息提取等应用场景。

Product-Name-NER-model - 繁体中文商品名称属性识别模型
GithubHuggingfaceNER命名实体识别商品名称属性提取开源项目模型繁体中文
这是一个针对繁体中文商品名称的命名实体识别(NER)模型,可识别16种商品属性,如品牌、名称和颜色等。模型在容量、重量和颜色识别方面表现尤为出色,总体F1-score达到0.7807。该工具可应用于电子商务、产品分析和搜索优化等领域,有助于提升相关数据处理的效率。
bert-fa-base-uncased-ner-peyma - 基于BERT的波斯语命名实体识别模型ParsBERT
GithubHuggingfaceParsBERTTransformer命名实体识别开源项目模型波斯语自然语言处理
ParsBERT是一个用于波斯语命名实体识别(NER)的开源模型。该模型基于BERT架构,在PEYMA数据集上训练,可识别7类命名实体。在PEYMA测试集上,ParsBERT实现了93.40%的F1分数,超越了此前的模型。研究者可通过Hugging Face Transformers库便捷地应用此模型进行波斯语NER任务。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
nb-bert-base-ner - 挪威语BERT命名实体识别模型 适用NorNE数据集
BERTGithubHuggingfaceNorNE命名实体识别开源项目挪威语模型自然语言处理
nb-bert-base-ner是一个基于BERT的挪威语命名实体识别模型,通过NorNE数据集微调而成。此模型能够识别挪威语文本中的人名、地名等命名实体。开发者可借助Hugging Face的transformers库轻松集成和使用,项目还提供了简洁的示例代码,便于快速实现挪威语命名实体识别功能。
thainer-corpus-v2-base-model - 泰语命名实体识别模型,支持地名、人名等信息的高精度识别
GithubHuggingfaceNamed Entity RecognitionWangchanBERTa实体识别模型开源项目模型模型训练泰语
该命名实体识别模型基于Thai NER v2.0语料库训练,专为泰语文本的实体分类而设计。通过WangchanBERTa基础模型训练,提供高精度和F1分数,确保识别结果准确。需要使用自定义代码进行推理以避免错误标签,相关信息和下载链接在HuggingFace Hub提供。
gliner_base - 灵活的命名实体识别模型,适用各种场景
BERTGLiNERGithubHuggingface命名实体识别多语言开源库开源项目模型
GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。
gliner_large-v2.1 - 通用命名实体识别模型,适合资源有限的应用场景
GLiNERGithubHuggingface双向Transformer命名实体识别多语言开源开源项目模型
GLiNER是使用双向Transformer编码器的通用命名实体识别模型,能够识别多种实体类型。相比于传统NER模型和体积庞大的语言模型,GLiNER在资源有限的情况下表现出卓越的灵活性和效率。最新的GLiNER v2.1版本支持单语和多语模型,性能表现依旧出色。用户可以通过安装GLiNER Python库,将其方便地集成到项目中,适用于多种语言的文本预测任务。
bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
SpanMarkerNER - 命名实体识别的高效训练框架
BERTGithubHugging FaceNamed Entity RecognitionRoBERTaSpanMarker开源项目
SpanMarker是一个基于Transformer库的命名实体识别框架,支持BERT、RoBERTa和ELECTRA等编码器。框架提供模型加载、保存、超参数优化、日志记录、检查点、回调、混合精度训练和8位推理等功能。用户可以方便地使用预训练模型,并通过免费API进行快速原型开发和部署。
bert-base-romanian-ner - 罗马尼亚语命名实体识别的高级BERT模型
GithubHuggingfaceRONECbert-base-romanian-ner命名实体识别开源项目文本预处理模型模型性能
此项目提供了一款经过微调的BERT模型,专注于罗马尼亚语命名实体识别,以优异的性能而著称。模型识别15种实体,如人物、地缘政治实体、地点、组织等,并基于RONEC v2.0数据集训练,拥有超过50万标记及80,283个独特实体。生成的标签采用BIO2格式,使其在命名实体识别任务中表现卓越。用户可通过Transformers库的NER管道或Python包便捷使用该模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号