Project Icon

PETR

多视角3D感知框架 目标检测与BEV分割的统一解决方案

PETR是一个多视角3D感知框架,通过位置嵌入变换将3D坐标信息编码到图像特征中。其升级版PETRv2引入时序建模,支持目标检测和BEV分割。该框架在nuScenes数据集上展现了出色性能,为3D感知研究提供了有力基线。此外,PETR还支持3D车道线检测,相关工作在CVPR 2023工作坊中获得第一名。

3D-VisTA - 简化3D视觉和文本对齐的新型预训练模型
3D-VisTAGithub多模态融合开源项目自然语言处理计算机视觉预训练模型
3D-VisTA是一种新型预训练变换器模型,专注于3D视觉和文本对齐。该模型采用简洁统一的架构,无需复杂的任务特定设计,可轻松适应多种下游任务。通过在大规模ScanScribe数据集上预训练,3D-VisTA在视觉定位、密集字幕生成等3D视觉语言理解任务中达到了领先水平。此外,该模型还表现出优异的数据效率,即使在标注数据有限的情况下也能保持强劲性能。
all-seeing - 全景视觉识别与关系理解的开放世界AI系统
All-Seeing ProjectGithub关系理解多模态模型大规模数据集开源项目视觉识别
All-Seeing项目开发了全面的视觉识别和理解系统。该项目推出AS-1B大规模数据集和ASM视觉语言模型,实现开放世界的全景视觉识别。其第二版引入关系对话任务,构建AS-V2数据集和ASMv2模型,增强关系理解能力。此外,项目提出CRPE基准测试,为评估关系理解提供系统平台。
MTR - 自动驾驶多模态运动预测的先进框架
GithubMotion TransformerWaymo数据集多模态运动预测开源项目神经网络自动驾驶
MTR项目是一个创新的多模态运动预测框架,专为自动驾驶场景设计。它通过全局意图定位和局部运动细化的联合优化来进行运动预测,采用可学习的运动查询对处理不同的运动模式。在Waymo开放运动数据集的评测中,MTR在边缘和联合运动预测任务上均表现出色,位居排行榜首位。该框架以其简洁性、高效性和准确性为自动驾驶领域的多模态运动预测提供了一个有力的基准。
InterFuser - 多传感器融合技术助力安全增强自动驾驶
CARLAGithubInterFuser传感器融合安全增强开源项目自动驾驶
该项目融合多模态多视角传感器信息,实现综合场景理解,生成可解释的中间特征,确保动作在安全范围内。该方法在CARLA AD排行榜上取得了最新成果,项目还提供了详细的数据生成、训练和评估步骤,以及实用工具脚本和预训练权重。
gdrnpp_bop2022 - GDRNPP:BOP挑战赛获奖的6D物体姿态估计算法
6D姿态估计BOP Challenge 2022GDRNPPGithub姿态优化开源项目目标检测
GDRNPP_BOP2022是一个在ECCV'22 BOP挑战赛中获得多项大奖的6D物体姿态估计算法。该项目采用域随机化技术、ConvNext骨干网络和双重掩码头,并结合深度信息进行姿态优化。项目提供完整的训练和测试代码,涵盖目标检测、姿态估计和优化,为计算机视觉研究提供高性能的6D姿态估计工具。
multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
Multi-Task-Transformer - 场景理解多任务变压器模型 TaskPrompter和InvPT
GithubTransformer场景理解多任务学习开源项目深度学习计算机视觉
Multi-Task-Transformer项目提供两种场景理解多任务变压器模型:TaskPrompter和InvPT。TaskPrompter利用空间-通道多任务提示进行密集场景理解,InvPT采用倒金字塔架构。这些模型在单目深度估计和3D目标检测等任务中表现出色,并在ICLR2023和ECCV2022会议上发表。项目开源代码和预训练模型,支持多种计算机视觉应用。
dinov2 - 通过无监督学习构建强大视觉特征的先进方法
DINOv2GithubVision Transformer开源项目自监督学习视觉特征计算机视觉
DINOv2是一种先进的无监督视觉特征学习方法,在1.42亿张未标注图像上预训练后生成高性能、鲁棒的通用视觉特征。这些特征可直接应用于多种计算机视觉任务,仅需简单线性分类器即可实现优异效果。DINOv2提供多种预训练模型,包括带寄存器的变体,在ImageNet等基准测试中表现卓越。
DINO - 降噪锚框实现端到端目标检测
COCODINOGithub图像分割开源项目深度学习目标检测
DINO采用改良的降噪锚框,提供先进的端到端目标检测功能,并在COCO数据集上实现了优异的性能表现。模型在较小的模型和数据规模下,达到了63.3AP的优秀成绩。DINO具有快速收敛的特点,使用ResNet-50主干网络仅在12个周期内即可达到49.4AP。项目还提供丰富的模型库和详细的性能评估,用户可以通过Google Drive或百度网盘获取模型检查点和训练日志。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号