Project Icon

strapi-plugin-meilisearch

Strapi与Meilisearch搜索引擎的无缝集成插件

strapi-plugin-meilisearch是Strapi的一个插件,用于将内容集成到Meilisearch搜索引擎中。该插件可自动同步内容更新,支持自定义索引名称、数据处理和过滤,并允许配置Meilisearch高级设置。它提供简便的安装和设置过程,便于开发者为Strapi应用添加高效的搜索功能。

Meilisearch-Strapi

Meilisearch Strapi Plugin

Meilisearch | Meilisearch Cloud | Documentation | Discord | Roadmap | Website | FAQ

npm version Tests Prettier License Bors enabled

⚡ The Meilisearch plugin for Strapi

Meilisearch is an open-source search engine. Discover what Meilisearch is!

Add your Strapi content-types into a Meilisearch instance. The plugin listens to modifications made on your content-types and updates Meilisearch accordingly.

Table of Contents

📖 Documentation

To understand Meilisearch and how it works, see the Meilisearch's documentation.

To understand Strapi and how to create an app, see Strapi's documentation.

⚡ Supercharge your Meilisearch experience

Say goodbye to server deployment and manual updates with Meilisearch Cloud. Get started with a 14-day free trial! No credit card required.

🔧 Installation

This package version works with the v4 of Strapi. If you are using Strapi v3, please refer to this README.

Inside your Strapi app, add the package:

With npm:

npm install strapi-plugin-meilisearch

With yarn:

yarn add strapi-plugin-meilisearch

To apply the plugin to Strapi, a re-build is needed:

strapi build

You will need both a running Strapi app and a running Meilisearch instance. For specific version compatibility see this section.

🏃‍♀️ Run Meilisearch

There are many easy ways to download and run a Meilisearch instance.

For example, if you use Docker:

docker pull getmeili/meilisearch:latest # Fetch the latest version of Meilisearch image from Docker Hub
docker run -it --rm -p 7700:7700 getmeili/meilisearch:latest meilisearch --master-key=masterKey

🏃‍♂️ Run Strapi

If you don't have a running Strapi project yet, you can either launch the playground present in this project or create a Strapi project.

We recommend indexing your content-types to Meilisearch in development mode to allow the server reloads needed to apply or remove listeners.

strapi develop
// or
yarn develop

Run Both with Docker

To run Meilisearch and Strapi on the same server you can use Docker. A Docker configuration example can be found in the directory resources/docker of this repository.

To run the Docker script add both files Dockerfile and docker-compose.yaml at the root of your Strapi project and run it with the following command: docker-compose up.

🎬 Getting Started

Now that you have installed the plugin, a running Meilisearch instance and, a running Strapi app, let's go to the plugin page on your admin dashboard.

On the left-navbar, Meilisearch appears under the PLUGINS category. If it does not, ensure that you have installed the plugin and re-build Strapi (see installation).

🤫 Add Credentials

First, you need to configure credentials via the Strapi config, or on the plugin page. The credentials are composed of:

  • The host: The url to your running Meilisearch instance.
  • The api_key: The master or private key as the plugin requires administration permission on Meilisearch.More about permissions here.

⚠️ The master or private key should never be used to search on your front end. For searching, use the public key available on the key route.

Using the plugin page

You can add your Meilisearch credentials in the settings tab on the Meilisearch plugin page.

For example, using the credentials from the section above: Run Meilisearch, the following screen shows where the information should be.

Add your credentials

Once completed, click on the add button.

Using a config file

To use the Strapi config add the following to config/plugins.js:

// config/plugins.js

module.exports = () => ({
  //...
  meilisearch: {
    config: {
      // Your meili host
      host: "http://localhost:7700",
      // Your master key or private key
      apiKey: "masterKey",
    }
  }
})

Note that if you use both methods, the config file overwrites the credentials added through the plugin page.

🚛 Add your content-types to Meilisearch

If you don't have any content-types yet in your Strapi Plugin, please follow Strapi quickstart.

We will use, as example, the content-types provided by Strapi's quickstart (plus the user content-type).

On your plugin homepage, you should have two content-types appearing: restaurant, category and user.

Content-types

By clicking on the left checkbox, the content-type is automatically indexed in Meilisearch. For example, if you click on the restaurant checkbox, the indexing to Meilisearch starts.

Content-types

Once the indexing is done, your restaurants are in Meilisearch. We will see in start searching how to try it out.

🪝 Apply Hooks

Hooks are listeners that update Meilisearch each time you add/update/delete an entry in your content-types. They are activated as soon as you add a content-type to Meilisearch. For example by clicking on the checkbox of restaurant.

Nonetheless, if you remove a content-type from Meilisearch by unchecking the checkbox, you need to reload the server. If you don't, actions are still listened to and applied to Meilisearch. The reload is only possible in develop mode; click on the Reload Server button. If not, reload the server manually!

Remove hook from content-type

💅 Customization

It is possible to add settings for every collection. Start by creating a sub-object with the name of the collection inside your plugins.js file.

// config/plugins.js

module.exports = () => ({
  //...
  meilisearch: {
    config: {
      restaurant: {}
    }
  }
})

Settings:

🏷 Custom index name

By default, when indexing a content-type in Meilisearch, the index in Meilisearch has the same name as the content-type. This behavior can be changed by setting the indexName property in the configuration file of the plugin.

To link a single collection to multiple indexes, you can assign an array of index names to the indexName property.

Example 1: Linking a Single Collection to a Single Index

In the following examples, the restaurant content-type in Meilisearch is called my_restaurant instead of the default restaurant.

// config/plugins.js

module.exports = () => ({
  //...
  meilisearch: {
    config: {
      restaurant: {
        indexName: "my_restaurants",
      }
    }
  }
})
// config/plugins.js

module.exports = () => ({
  //...
  meilisearch: {
    config: {
      restaurant: {
        indexName: ["my_restaurants"],
      }
    }
  }
})

It is possible to bind multiple content-types to the same index. They all have to share the same indexName.

For example if shoes and shirts should be bound to the same index, they must have the same indexName in the plugin configuration:

// config/plugins.js

module.exports = () => ({
  //...
  meilisearch: {
    config: {
      shirts: {
        indexName: ['products'],
      },
      shoes: {
        indexName: ['products'],
      },
    },
  },
})

Now, on each entry addition from both shoes and shirts the entry is added in the product index of Meilisearch.

Example 2: Linking a Single Collection to Multiple Indexes

Suppose you want the restaurant content-type to be indexed under both my_restaurants and all_food_places indexes in Meilisearch. You can achieve this by setting the indexName property to an array containing both index names, as shown in the configuration below:

// config/plugins.js

module.exports = () => ({
  //...
  meilisearch: {
    config: {
      restaurant: {
        indexName: ['my_restaurants', 'all_food_places'],
      }
    }
  }
})

disclaimer

Nonetheless, it is not possible to know how many entries from each content-type is added to Meilisearch.

For example, given two content-types:

  • Shoes: with 300 entries and an indexName set to product
  • Shirts: 200 entries and an indexName set to product

The index product has both the entries of shoes and shirts. If the index product has 350 documents in Meilisearch, it is not possible to know how many of them are from shoes or shirts.

When removing shoes or shirts from Meilisearch, both are removed as it would require to much processing to only remove one. You can still re-index only one after that.

Example with two single types:

Example of two content-types with same indexName

Examples can be found this directory.

🪄 Transform entries

By default, the plugin sent the data the way it is stored in your Strapi content-type. It is possible to remove or transform fields before sending your entries to Meilisearch.

Create the alteration function transformEntry in the plugin's configuration file. Before sending the data to Meilisearch, every entry passes through this function where the alteration is applied.

transformEntry can be synchronous or asynchronous.

You can find a lot of examples in this directory.

Example

For example, the restaurant content-type has a relation with the category content-type. Inside a restaurant entry the categories field contains an array of each category in an object format: [{ name: "Brunch" ...}, { name: "Italian ... }].

The following transforms categories in an array of strings containing only the name of the category:

// config/plugins.js

module.exports = {
  meilisearch: {
    config: {
      restaurant: {
        transformEntry({ entry }) { // can also be async
          return {
            ...entry,
            categories: entry.categories.map(category => category.name)
          }
        },
      }
    }
  },
}

Result:

  {
    "id": 2,
    "name": "Squared Pizza",
    "categories": [
      "Brunch",
      "Italian"
    ],
    // other fields
  }

By transforming the categories into an array of names, it is now compatible with the filtering feature in Meilisearch.

Important: You should always return the id of the entry without any transformation to allow sync when unpublished or deleting some entries in Strapi.

🤚 Filter entries

You might want to filter out some entries. This is possible with the filterEntry. Imagine you don't like Alfredo's restaurant. You can filter out this specific entry.

filterEntry can be synchronous or asynchronous.

// config/plugins.js

module.exports = {
  meilisearch: {
    config: {
      restaurant: {
        filterEntry({ entry }) { // can also be async
          return entry.title !== `Alfredo`
        },
      },
    },
  },
}

Alfredo's restaurant is not added to Meilisearch.

🏗 Add Meilisearch settings

Each index in Meilisearch can be customized with specific settings. It is possible to add your Meilisearch settings configuration to the indexes you create using the settings field in the plugin configuration file.

The settings are added when either: adding a content-type to Meilisearch or when updating a content-type in Meilisearch. The settings are not updated when documents are added through the listeners.

For example

module.exports = {
  meilisearch: {
    config: {
      restaurant: {
        settings: {
          filterableAttributes: ['categories'],
          synonyms: {
            healthy: ['pokeball', 'vegan']
          }
        }
      }
    }
 
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号