Project Icon

FeatUp

提升任意模型特征空间分辨率的框架

FeatUp是一个模型无关的特征提升框架,可将任意模型的特征空间分辨率提高16-32倍,同时保持语义一致性。该框架支持DINO、CLIP和ResNet50等多种预训练模型,适用于图像分割、目标检测等视觉任务。FeatUp提供简洁的API接口和开源代码,为计算机视觉研究和应用开辟了新途径。

ImageUpscalerAI.com - 智能图片放大工具 提升图像清晰度
AI工具ImageUpscalerAI人工智能图像处理图像放大
ImageUpscalerAI.com提供免费在线图片放大服务。该工具采用先进技术,能快速提升各类图像的分辨率和质量。用户可选择不同放大倍率,也可保持原始尺寸。操作简单,无需专业知识,适合寻求提高图片清晰度的用户。
Let's Enhance - 智能化在线图像增强与分辨率提升平台
AI工具AI技术Let's Enhance分辨率提升图像增强照片编辑
Let's Enhance利用人工智能技术提升图像质量、放大分辨率并修复模糊问题。该工具适用于创意专业人士、印刷行业和AI艺术创作,支持批量处理和多种预设效果。通过深度卷积神经网络,智能添加细节和像素,显著提高图像清晰度。平台提供免费试用和多种付费方案。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
enhancr - 基于AI的多功能视频增强软件
GithubTensorRTenhancr人工智能图形用户界面开源项目视频增强
enhancr是一款开源的视频增强软件,集成了AI驱动的帧插值和超分辨率功能。它支持NVIDIA TensorRT和NCNN推理引擎,兼容NVIDIA、AMD和Apple Silicon等多种GPU。软件提供图形界面,具备实时预览、批量处理和自定义模型等特性,可满足不同用户的视频增强需求。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
video_features - 多模态视频特征提取框架 支持多种深度学习模型
GitHub项目Github多模态分析开源项目深度学习模型视频特征提取计算机视觉
video_features是一个开源的视频特征提取框架,支持视觉、音频和光流等多种模态。该框架集成了S3D、R(2+1)d、I3D-Net等动作识别模型,VGGish声音识别模型,以及RAFT光流提取模型。它支持多GPU和多节点并行处理,可通过命令行或Colab快速使用。输出格式灵活,适用于视频分析相关的研究和应用。
albumentations - 提升深度学习模型质量的图像增强Python库
AlbumentationsGithubPython库图像增强开源项目深度学习计算机视觉
Albumentations, 一个高效的Python库用于图像增强,通过逾70种方法优化深度学习和计算机视觉模型性能。支持PyTorch和TensorFlow框架,适合多种视觉任务如分类、语义分割和目标检测。
DFN5B-CLIP-ViT-H-14 - 高性能图像-文本对比学习模型
CLIPDFN-5BGithubHuggingface图像分类开源项目模型深度学习计算机视觉
DFN5B-CLIP-ViT-H-14是一个基于CLIP架构的图像-文本对比学习模型,通过DFN技术从430亿图像-文本对中筛选出50亿高质量样本进行训练。模型在39个图像分类基准测试中表现优异,平均准确率达69.8%。支持零样本图像分类和跨模态检索,可与OpenCLIP无缝集成。这一模型为计算机视觉和自然语言处理领域提供了有力支持,适用于多种研究和应用场景。
SRGAN - 使用生成对抗网络提升单图像超分辨率效果
GithubSRGANTensorLayerXVGG19开源项目计算机视觉超分辨率
本项目展示了使用生成对抗网络(GAN)如何实现单图像的高分辨率超分辨率。使用预训练的VGG19模型和高分辨率图像进行训练,支持多种深度学习框架,如TensorFlow、PaddlePaddle、MindSpore,未来还将支持PyTorch。项目提供完整的训练和评估指南,并通过简单的代码修改可以切换不同的后端框架。适用于图像处理和计算机视觉领域的研究人员和开发人员,项目中展示了技术实现的详细结果,还提供了参考文献和讨论资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号