Project Icon

DeepSpeed-MII

开源低延迟模型推理库

DeepSpeed-MII是一款开源Python库,专注于高吞吐量、低延迟和成本效益的模型推理。支持的技术包括块状KV缓存、连续批处理、高性能CUDA内核等,适用于37000多个模型,如Llama-2、Mixtral和Phi-2。v0.2版本提升了性能和功能,吞吐量提高至2.5倍。适用于语言模型及图像生成任务。

m2 - 子二次GEMM架构Monarch Mixer实现高效语言模型
GithubM2-BERTMonarch Mixer人工智能开源项目机器学习自然语言处理
Monarch Mixer是一种创新的子二次GEMM架构,用于训练序列长度和模型维度均为子二次的语言模型。该架构使用Monarch矩阵层替代Transformer中的注意力和MLP操作,提高了计算效率。基于此架构的M2-BERT模型在减少25%参数和计算量的同时,在GLUE基准测试中达到了与BERT相当的性能。项目开源了预训练模型权重以及预训练和微调代码,方便研究者进行further研究。
Finetune_LLMs - 引用数据集微调大型语言模型 (LLM) 的代码
DeepSpeedFinetune LLMsGPTJGithubHuggingfaceNvidia-docker开源项目
Finetune_LLMs 项目提供代码支持DeepSpeed、Lora或QLora方法微调大型语言模型,涵盖从名言数据集学习及利用 Nvidia-docker 简化环境配置,适于需GPU支持的用户。
DeepSeek-V2-Lite - 创新架构驱动的高效混合专家语言模型
DeepSeek-V2GithubHuggingface多头潜在注意力大规模语言模型开源项目模型混合专家模型自然语言处理
DeepSeek-V2-Lite是一款采用创新架构的混合专家(MoE)语言模型。通过多头潜在注意力(MLA)和DeepSeekMoE技术,该模型实现了训练和推理的高效性。模型总参数量为16B,激活参数为2.4B,在多项英文和中文基准测试中表现优异,超越了同类7B密集模型和16B MoE模型。DeepSeek-V2-Lite支持单40G GPU部署和8x80G GPU微调,为自然语言处理研究提供了一个高性能且资源友好的选择。
mlx_parallm - 为Apple Silicon设备实现高效并行推理
Apple SiliconGithubMLX ParaLLM并行推理开源项目批处理KV缓存语言模型
MLX ParaLLM是一个为Apple Silicon设备开发的开源项目,利用MLX框架实现批处理KV缓存技术,从而提高并行推理效率。项目支持Meta-Llama、Phi-3和Gemma等多种模型,兼容量化和float16格式。通过batch_generate方法,MLX ParaLLM实现自动填充、提示模板格式化和多种采样策略,适用于大规模并行文本生成任务。
llama2.c - 轻量级Llama 2推理引擎 支持多平台高性能部署
AI模型GithubLlama 2人工智能开源项目自然语言处理
llama2.c是一个基于Llama 2的开源轻量级推理引擎,支持在Linux、BSD、macOS和Windows等多平台上运行。它提供高性能CPU和GPU推理,并可利用OpenBLAS、Intel MKL等加速库。该项目旨在通过部署小型网络化LLM,在资源受限环境(如学校图书馆)中实现AI应用,推动AI技术的普及和集体智能的发展。
languagemodels - 轻松实现低内存大语言模型推理的Python库
GPU加速GithubLanguage ModelsPython大语言模型开源项目语义搜索
该Python库简化了大语言模型的使用,最低内存需求仅为512MB,确保所有推理在本地完成以保障数据隐私。支持GPU加速及多种模型配置,功能涵盖文本翻译、代码补全、语义搜索等,适合教育和商业用途。用户可通过简单的pip命令安装,在REPL、笔记本或脚本中使用。详见官方网站的文档与示例程序。
distributed-llama - 优化大型语言模型的分布式计算性能
Distributed LlamaGithubLlama 3Python 3TCP socketsTensor parallelism开源项目
通过分布式计算技术,分散大型语言模型(LLMs)的工作负载到多个设备上,即使是性能较弱的设备也能运行强大的LLMs。项目使用TCP sockets同步状态,用户可以使用家庭路由器轻松配置AI集群,实现显著加速效果。Distributed Llama支持多种模型架构,提供简便的设置和操作方法,用户可以在本地运行大规模语言模型。
DeepCache - 免费加速扩散模型
DeepCacheGithub开源项目无训练模型加速降采样高搜索量
DeepCache通过无需训练的方式显著加速扩散模型,支持Stable Diffusion、Stable Diffusion XL、Stable Video Diffusion等。兼容多种采样算法如DDIM和PLMS,并提供详细的使用示例,用户无需修改代码即可提升性能。此外,DeepCache还支持并行推理和多GPU使用,确保高效部署和运行。
Mixture-of-depths - Transformer语言模型的动态计算资源分配方法
GithubMixture-of-Depths开源项目模型实现深度学习语言模型
Mixture-of-depths是一种Transformer语言模型优化方法,通过动态分配计算资源提高性能。该项目提供Mistral、Mixtral、LLama等多个主流模型的非官方实现。项目支持高级API接口,兼容transformers库,便于研究应用。这种方法旨在提升模型推理效率和灵活性,同时保持输出质量。
ppl.nn - 用于 AI 推理的高性能深度学习推理引擎
GithubONNXOpenMMLabPPLNN卷积神经网络开源项目深度学习推理
PPLNN是一款高效的深度学习推理引擎,兼容各种ONNX模型,并对OpenMMLab进行了优化。其最新的LLM引擎包括闪存注意力、分裂K注意力、动态批处理和张量并行等功能,并支持INT8分组和通道量化。项目发布了多个LLM模型,如LLaMA、ChatGLM和Baichuan,并提供详细的构建和集成指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号