Project Icon

DirectML

跨平台硬件加速机器学习库,支持多种GPU

DirectML是一款基于DirectX 12的高性能机器学习库,为常见机器学习任务提供GPU加速。它支持AMD、Intel、NVIDIA等多种DirectX 12兼容GPU,与Direct3D 12无缝集成,具有低开销和跨硬件一致性。DirectML适用于需要高性能和可靠性的机器学习应用,可集成到Windows ML、ONNX Runtime、PyTorch和TensorFlow等主流框架中。

tensorflow-directml-plugin - DirectML驱动的TensorFlow硬件加速插件
DirectMLGPU加速GithubTensorFlowWindows开源项目机器学习
TensorFlow-DirectML-Plugin是基于DirectML的TensorFlow插件,为Windows 10和WSL提供跨厂商硬件加速。该插件利用Pluggable Device API,支持在DirectX 12兼容硬件上训练和推理机器学习模型。目前处于早期开发阶段,兼容Python 3.8-3.11,支持AMD、Intel和NVIDIA主流GPU。该插件旨在为Windows平台的TensorFlow用户提供更多硬件加速选择。
Windows-Machine-Learning - 低延迟的机器学习推理API,适用于各种应用
GithubONNX RuntimeWindows Machine Learning工具开源项目机器学习模型优化
Windows Machine Learning通过ONNX Runtime和DirectML提供高效低延迟的机器学习推理API,适用于框架、游戏等实时应用。项目还包含多种模型转换和优化工具,示例以及开发者工具,帮助开发者在Windows应用中轻松实现机器学习。了解更多关于模型样本、高级场景和开发者工具的信息,并访问详细的教程和指南。
machinelearning - 跨平台开源框架,简化.NET应用中的模型开发与部署
GithubML.NET开源框架开源项目机器学习模型训练自定义模型
ML.NET是一个跨平台的开源机器学习框架,使开发者无需机器学习经验即可在.NET应用中构建、训练和部署定制模型。它支持从文件和数据库加载数据,并进行数据转换,具备多种机器学习算法。ML.NET适用于分类、预测和异常检测等多种场景,并兼容TensorFlow和ONNX模型,扩展性强。支持Windows、Linux和macOS操作系统,以及ARM64和Apple M1处理器架构。
machinelearning-samples - 专为.NET开发者设计的跨平台的开源机器学习框架
GithubML.NETMLOps开源开源项目机器学习跨平台
ML.NET是一个跨平台的开源机器学习框架,专为.NET开发者设计。它提供丰富的样例和教程,涵盖二分类、多分类、推荐系统、回归、时间序列预测、异常检测和聚类等任务,方便开发者将机器学习模型集成至现有或新建的.NET应用中。项目还提供了完整的端到端应用示例,包括Web和桌面应用,扩展了机器学习的实际应用场景。
oneDNN - 优化深度学习应用的跨平台性能库,支持多种处理器架构
CPU优化GithubUXL Foundationdeep learningoneAPI specificationoneDNN开源项目
oneAPI Deep Neural Network Library (oneDNN) 是一个开源的跨平台性能库,提供深度学习应用的核心模块。oneDNN 专为Intel架构处理器、Intel图形处理器和Arm 64位架构处理器进行优化,并实验性支持NVIDIA、AMD、OpenPOWER、IBMz 和 RISC-V 等架构的 GPU 和 CPU。深度学习应用及框架开发者可以利用oneDNN提升在多种硬件上的性能表现。
dlprimitives - 开源跨平台深度学习与推理工具库
GPUGithubONNXOpenCL开源项目深度学习跨平台
DLPrimitives是一个开源项目,旨在提供跨平台的OpenCL深度学习和推理工具。该项目创建了支持多种GPU架构的深度学习原语库和高效推理库。DLPrimitives的目标包括开发简约的深度学习框架,并与PyTorch、TensorFlow等主流框架集成,使OpenCL API在深度学习领域得到广泛应用。目前,DLPrimitives已支持多种神经网络模型,并在AMD、Intel、NVIDIA等多种GPU上进行了测试。
OnnxStack - 高效机器学习集成框架 无缝对接.NET生态
.NETGithubONNX RuntimeStableDiffusion图像处理开源项目机器学习
OnnxStack为.NET开发者提供了一个便捷的机器学习集成方案。它与ONNX Runtime和Microsoft ML无缝对接,支持Stable Diffusion、图像放大和对象检测等AI模型。开发者可以在.NET环境中直接构建和运行机器学习应用,不再依赖Python。这个框架大大简化了AI开发流程,是.NET生态系统中的一个重要补充。
cuml - 高性能GPU机器学习库
GPU机器学习GithubPython APIRAPIDScuML多GPU计算开源项目
cuML是RAPIDS生态系统中的GPU加速机器学习库,提供与scikit-learn兼容的API。它支持在GPU上执行传统表格机器学习任务,无需深入CUDA编程。对大型数据集,cuML的性能可比CPU实现提升10-50倍。该库还支持多GPU和多节点多GPU操作,并通过Dask实现分布式计算。
MKL.NET - 跨平台数学计算库 整合Intel MKL功能
.NET APIGithubMKL.NET开源项目矩阵运算英特尔MKL跨平台
MKL.NET作为跨平台.NET API,为Intel MKL提供接口。项目保持与MKL C开发者参考手册相近的语法,实现了矩阵代数、优化算法和统计函数等数学计算功能。设计开放且易用,通过GitHub Actions进行跨平台测试。MKL.NET采用NuGet包管理,支持多种运行时环境,是一个灵活的数学计算工具。
mlir-aie - MLIR驱动的AI引擎工具链 助力AI设备性能优化
AI EngineAMDGithubMLIRRyzen AIVersal开源项目
mlir-aie是一个基于MLIR的开源工具链,专为AMD Ryzen™ AI和Versal™等AI引擎设备设计。它通过多层抽象的MLIR表示,实现AI引擎核心编程、数据移动和阵列连接描述。项目提供Python API接口,支持后端代码生成,并集成AMD Vitis™软件中的AI引擎编译器。作为面向工具开发者的项目,mlir-aie提供AIE设备的低级访问,促进多样化编程模型的开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号