Project Icon

FocalNet

突破注意力机制的新型视觉模型架构

FocalNet是一种创新的视觉模型架构,无需使用注意力机制。其核心的焦点调制技术在多项视觉任务中超越了现有的自注意力方法。该模型在ImageNet分类和COCO检测等基准测试中表现优异,同时保持了高效简洁的实现。FocalNet具有平移不变性、强输入依赖性等特点,为计算机视觉领域提供了一种全新的建模思路。

ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
tf_efficientnet_b1.ns_jft_in1k - EfficientNet图像分类模型,无监督学习的图像标杆
EfficientNetGithubHuggingfaceJFT-300mPyTorch半监督学习图像分类开源项目模型
本项目是一个EfficientNet图像分类模型,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上使用Tensorflow训练,并移植到PyTorch中。它可以执行图像分类、特征提取和嵌入生成。拥有仅7.8M参数和高计算效率,适合研究深度学习模型的缩放和性能优化。
fuyu-8b - 无需图像编码器的轻量级多模态开源模型
Fuyu-8BGithubHuggingface人工智能图像识别多模态模型开源项目模型计算机视觉
Fuyu-8B是Adept AI开发的开源多模态模型,基于decoder-only transformer架构设计。模型无需图像编码器即可处理任意分辨率图像,处理速度在100毫秒以内。在图表解析、UI交互和视觉定位等任务中展现稳定性能,同时在标准图像理解测试中表现良好。作为基础模型,适合通过微调来满足不同场景需求。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
tf_efficientnet_lite0.in1k - 轻量级EfficientNet-Lite模型实现高效图像分类与特征提取
EfficientNet-LiteGithubHuggingfaceImageNet-1k图像分类开源项目模型模型对比特征提取
EfficientNet-Lite0是一款专为高效图像分类和特征提取设计的模型,经过ImageNet-1k训练。该模型已被迁移至PyTorch,并利用timm库进行图像嵌入和特征图提取。在4.7M参数和0.4 GMACs的架构下,实现了高效性能与计算资源节约,适合作为多种视觉任务的解决方案。
scenic - 多模态视觉智能研究框架
GithubJAXScenicTransformer开源项目深度学习计算机视觉
Scenic是一个基于JAX的开源视觉智能研究框架,聚焦注意力机制模型。它提供轻量级共享库和完整项目实现,支持分类、分割、检测等任务,可处理图像、视频、音频等多模态数据。Scenic内置多个前沿模型和基线,有助于快速原型设计和大规模实验。
MambaOut - 高效视觉模型展示简洁架构卓越性能
GithubMambaOut图像分类开源项目深度学习神经网络计算机视觉
MambaOut是一种新型视觉模型架构,通过堆叠门控CNN块构建,无需使用复杂的状态空间模型。在ImageNet图像分类任务中,它的性能超越了现有的视觉Mamba模型,同时具有较低的参数量和计算复杂度。该项目提供了从轻量级MambaOut-Femto到大型MambaOut-Base的多个预训练模型,在准确率和效率间实现平衡。研究人员可利用提供的代码和教程复现结果或应用于自身任务。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
keras_cv_attention_models - 深度学习模型和使用指南
GithubKeras_cv_attention_modelsPyTorchTensorFlow开源项目模型训练
该项目提供全面的深度学习模型和使用指南,支持Keras和PyTorch后端。涵盖基础操作、模型训练、推理优化等功能,并详细介绍识别、检测、分割和语言模型的使用。还支持ONNX导出和推理性能评估。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号