Project Icon

ML-For-Beginners

12周机器学习课程,涵盖回归、分类、聚类等经典技术

Microsoft提供的12周机器学习课程,共26节课,帮助初学者学习回归、分类、聚类等经典机器学习技术。课程内容丰富,包括预习复习测验、书面指导、视频演示和项目实践,覆盖基础知识、历史、自然语言处理、时间序列预测和强化学习。通过项目学习方式,学生能在实际操作中掌握新技能。

100-Days-Of-ML-Code - 100天机器学习编程
Github开源项目支持向量机机器学习神经网络线性回归逻辑回归
100-Days-Of-ML-Code项目通过每天的编程挑战带领学习者深入机器学习领域。覆盖从数据预处理到复杂算法的全面教程,项目内容涵盖线性回归、逻辑回归到决策树等多种算法,每日实践确保理论与实战结合。适合任何级别的开发者提升机器学习技能。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
machine_learning_complete - 机器学习综合教程,涵盖数据处理至深度学习全流程
Github人工智能开源项目数据分析数据可视化机器学习深度学习
machine_learning_complete是一个全面的机器学习资源库,包含35个详细的笔记本教程,覆盖了从Python编程到数据分析、机器学习和深度学习的全面技能。项目自2021年起不断更新,加入了最新的MLOps指南,适合各级别学者和开发人员。
data-science - 开源社区大学提供的数据科学自学课程
GitHubGithub开源教育开源项目数据科学机器学习课程大纲
开源社区大学提供的数据科学自学课程,汇集世界顶尖大学的在线资源。课程覆盖数据科学本科全部内容,包括编程、数学、统计学和机器学习等。学习者可自主安排进度,利用进度跟踪工具和社区支持完成学习。这一免费资源为有志于数据科学领域的学习者提供了全面的教育路径。
machine-learning - 机器学习与数据科学教程,深度学习、模型部署与强化学习
Githubmachine-learning开源项目强化学习时间序列模型部署深度学习
本项目持续更新,介绍了数据科学和机器学习各个主题。内容涵盖深度学习、模型部署、运筹学和强化学习等,提供Jupyter Notebook格式教程,结合Python科学栈(如numpy、pandas)和开源库(如scikit-learn、TensorFlow、PyTorch)进行教学示范,平衡数学符号与实际应用。
100DaysofMLCode - 100天掌握机器学习编程实践从数据预处理到深度学习
Github分类回归开源项目数据预处理机器学习聚类
100DaysofMLCode是一个为期100天的机器学习编程挑战项目,涵盖数据预处理、回归、分类、聚类、强化学习、自然语言处理和深度学习等主题。项目提供代码示例和日志记录,适合不同水平的开发者学习和实践机器学习技术。作为开源项目,它欢迎社区贡献。
Web-Dev-For-Beginners - Microsoft全面Web开发课程 通过实践项目掌握编程基础
CSSGitHubGithubHTMLJavaScriptWeb开发开源项目
Microsoft提供的12周Web开发入门课程,涵盖JavaScript、CSS和HTML基础。通过24个实践项目如植物温室、浏览器扩展和太空游戏,培养编程技能。课程采用项目制学习,配合测验和讨论,帮助初学者掌握Web开发并提高学习效果。适合想要开始Web开发之旅的编程新手。
intro-to-deep-learning - 全面实用的深度学习入门课程
GithubJupyter NotebookPython开源项目机器学习深度学习神经网络
这是一个面向深度学习初学者的开源项目,提供全面的入门课程。课程内容包括神经网络基础知识的介绍材料、实践演练和扩展资源。采用Jupyter Notebook形式,鼓励学生动手实践以加深理解。课程涵盖深度学习核心概念,为学习者打下扎实基础,为进一步探索高级主题如GAN和NLP做好准备。项目注重理论与实践结合,并提供深入学习资源。项目内容结构清晰,按主题分类组织,每个主题包含概述、预习建议、实践演示和深入学习资源。课程支持本地运行和Google Colab使用两种方式,增加了学习的灵活性。
ML-foundations - 机器学习基础学科全面导引
GithubJon KrohnMachine Learning Foundations开源项目微积分概率与统计线性代数
该项目提供全面的数学、统计学和计算机科学基础,帮助用户掌握当代机器学习方法。课程涵盖线性代数、微积分、概率与统计以及算法和数据结构,支持通过Jupyter Notebook、YouTube视频、O'Reilly平台和Udemy课程进行学习。适合机器学习从业者、数据科学家、软件开发者和AI爱好者。
ML-From-Scratch - 深入理解机器学习算法,从基础到实际案例
GithubMachine LearningPythonReinforcement LearningSupervised LearningUnsupervised Learning开源项目
本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号