Project Icon

Multilingual-MiniLM-L12-H384

紧凑高效的多语言预训练模型助力跨语言自然语言处理

Multilingual-MiniLM-L12-H384是一款小型多语言预训练模型,采用12层结构和384维隐藏单元,transformer参数仅2100万。该模型在XNLI和MLQA等跨语言任务中表现出色,支持15种语言,同时保持了较小的模型规模。它融合了BERT的架构设计和XLM-R的分词技术,适用于各类需要高效多语言处理的应用场景。

MiniLM-L12-H384-uncased - 轻量快速的预训练语言模型实现BERT级别性能表现
BERTGithubHuggingfaceMiniLM开源项目模型模型压缩深度学习自然语言处理
MiniLM-L12-H384-uncased通过模型压缩技术将参数量降至33M,在保持与BERT相当性能的同时,运行速度提升2.7倍。模型在SQuAD 2.0和GLUE等自然语言理解任务中表现出色,可直接替代BERT,适用于对模型体积和运行效率敏感的场景。
mMiniLMv2-L12-H384-distilled-from-XLMR-Large - 轻量级多语言自然语言处理模型
GithubHuggingfaceMicrosoftMiniLMv2多语言模型开源项目机器学习模型自然语言处理
mMiniLMv2-L12-H384-distilled-from-XLMR-Large是一个基于Microsoft UniLM项目的多语言自然语言处理模型。该模型通过知识蒸馏技术从XLM-R大型模型中提取知识,在维持高性能的同时大幅缩小了模型体积。作为一个轻量级模型,它能够适应文本分类、问答系统和序列标注等多种NLP任务,尤其适合在计算资源有限的环境中使用。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
MiniLMv2-L6-H384-distilled-from-BERT-Large - 微软开发的轻量压缩型自然语言处理模型
GithubHuggingfaceMicrosoftMiniLMv2人工智能开源项目模型深度学习自然语言处理
MiniLMv2-L6-H384-distilled-from-BERT-Large是微软开发的轻量级自然语言处理模型,通过知识蒸馏技术从BERT-Large模型压缩而来。该模型在保持性能的同时,显著降低了模型体积和计算资源需求,适合在资源受限场景下部署使用。
mmarco-mMiniLMv2-L12-H384-v1 - 支持多语言的MMARCO跨编码器模型
Cross-EncoderGithubGoogle翻译Huggingface信息检索多语言开源项目模型模型训练
MMARCO-MiniLMv2-L12-H384-v1模型使用MMARCO数据集,以Google Translate翻译为14种语言,基于多语言MiniLMv2训练,主要用于信息检索。借助SentenceTransformers工具,用户可以对查询进行编码和排序,实现高效的信息检索。详细信息和训练代码可在SBERT.net及GitHub上查看,适用于多语言环境的信息检索。
paraphrase-multilingual-MiniLM-L12-v2 - 多语言句子相似性和语义聚类的高效工具
BERT模型GithubHuggingfacesentence-transformers开源项目模型特征提取语义搜索语句相似性
paraphrase-multilingual-MiniLM-L12-v2模型是sentence-transformers框架的一部分,能够将句子转换为384维的密集向量。该模型支持多语言功能,适合进行句子聚类和语义搜索,并能通过HuggingFace Transformers应用。在此模型的优化下,您可在多语言环境(如法语、葡萄牙语、中文)中高效实现句子相似性比较和特征提取,并利用其简便的安装和使用过程提升操作效率。
all-MiniLM-L12-v1 - 基于MiniLM的句子向量化与语义搜索模型
GithubHuggingfacesentence-transformers句子向量开源项目机器学习模型自然语言处理语义搜索
all-MiniLM-L12-v1是一个开源的句子向量化模型,基于MiniLM架构开发。该模型通过10亿对句子数据训练而成,可将文本转化为384维向量表示,广泛应用于文本聚类、语义检索等场景。模型支持多种调用方式,兼容sentence-transformers和HuggingFace框架,为开发者提供便捷的文本向量化解决方案。
paraphrase-MiniLM-L12-v2 - sentence-transformers模型用于生成384维句子嵌入向量
GithubHuggingfaceMiniLMsentence-transformers向量嵌入开源项目模型自然语言处理语义相似度
paraphrase-MiniLM-L12-v2是一个sentence-transformers模型,将句子和段落映射到384维向量空间。适用于聚类和语义搜索,支持通过sentence-transformers或Hugging Face Transformers库使用。该模型在Sentence Embeddings Benchmark上表现良好,采用Transformer和Pooling架构处理文本并生成句子嵌入。
bert_uncased_L-12_H-768_A-12 - BERT迷你模型优化低资源环境下的应用
BERTGithubHuggingface开源项目模型知识蒸馏紧凑模型计算资源预训练
BERT Miniatures提供24款小型BERT模型,适合计算资源有限的环境。利用知识蒸馏,这些模型可通过微调获得精确的结果,旨在支持低资源环境的研究并鼓励探索新的创新方向。用户可在官方BERT GitHub页面及HuggingFace平台下载这些模型。它们在GLUE基准测试中表现良好,可通过调整超参数实现最佳效果。详情请参考相关文献。
all-MiniLM-L12-v2 - 基于自监督学习的高效句子嵌入模型
GithubHuggingfacesentence-transformers句子嵌入句子相似性对比学习开源项目微调模型
采用自监督对比学习技术,all-MiniLM-L12-v2模型专注于高效编码句子和短段落,利用超过11亿句对进行训练,加强语义搜索和信息检索性能。结合TPU与JAX/Flax技术优化,模型方便集成在sentence-transformers或HuggingFace Transformers中,适合多种文本处理应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号