Project Icon

nni

可自动执行特征工程、神经架构搜索、超参数调优和深度学习的模型压缩

NNI提供一站式解决方案,支持自动化的特征工程、神经架构搜索、超参数调整和模型压缩。它兼容多种框架,并提供详尽的API、丰富的示例及全面的教程。适用于多种训练环境,包括本地、远程SSH服务器和Kubernetes,帮助推动开源社区的技术发展。

sparsezoo - 高效稀疏神经网络模型库
GithubNeuralmagicSparseZoo开源项目模型库深度学习稀疏化模型
SparseZoo是一个不断扩展的神经网络模型库,包含高度稀疏和稀疏量化模型,以及相应的稀疏化配方。它简化并加速深度学习模型的开发,帮助实现高效推理。用户可以通过API或云端访问这些模型及其配方,并进行迁移学习或配方迁移。SparseZoo支持多种稀疏化算法和不同推理性能的模型,并提供全面的文档和社区支持。
NeuroCraft - 简化神经网络开发流程的直观平台
AI工具人工智能模型训练模型设计模型部署神经网络
NeuroCraft是一个创新的神经网络开发平台,提供设计、训练和部署神经网络的综合解决方案。该平台采用简洁的拖放界面,简化模型设计过程,支持实时观察模型学习并灵活配置训练参数。NeuroCraft还提供多样化的部署选项,方便将模型集成到现有系统或用于应用内预测。这个平台适合各级人工智能从业者使用,有助于高效管理神经网络的全生命周期。
algebraic-nnhw - 创新FFIP算法驱动的机器学习硬件加速器
GithubML硬件架构SystemVerilog内积算法开源项目深度神经网络加速器系统架构
项目开发的机器学习硬件加速器架构采用了创新的Free-pipeline Fast Inner Product (FFIP)算法。这种设计只需要传统方法一半的乘法器单元,就能实现相同的性能。该架构适用范围广泛,涵盖全连接、卷积、循环和注意力/transformer等多种机器学习模型层。它可以轻松集成到现有的定点系统阵列ML加速器中,显著提升吞吐量和计算效率。项目不仅提供了完整的RTL实现,还包括配套的编译器和测试环境,为机器学习硬件加速研究领域贡献了有价值的资源。
tt-metal - Python与C++神经网络运算库
GithubGrayskull模组TT-MetaliumTT-NNWormhole模组开源项目神经网络
TT-NN 提供灵活的神经网络运算功能,支持包括ResNet-50和BERT-Large在内的多种模型,能够实现高效的端到端和设备间的数据吞吐量。其兼容N150和N300卡的Wormhole模型,及适用于TT-QuietBox和TT-LoudBox的高性能模型,能满足不同硬件需求。结合TT-Metalium低级编程模型,提供丰富的开发指导和API参考,有助于在Tenstorrent硬件上高效地进行神经网络训练和推理。
onnxruntime-genai - 设备端高效运行LLM模型的灵活解决方案
GithubLLMONNX Runtime开源项目模型架构生成式AI硬件加速
onnxruntime-genai是一个用于设备端高效运行大型语言模型的API。它支持Gemma、Llama、Mistral等多种模型架构,提供多语言接口。该项目实现了生成式AI的完整流程,包括预处理、推理、logits处理等。开发者可以使用generate()方法一次性生成输出或实现逐token流式输出。onnxruntime-genai为本地部署和运行LLM模型提供了简单、灵活、高性能的解决方案。
NanoLLM - 本地LLM推理优化工具包
GithubJetsonLLM优化NanoLLM多模态AI开源项目本地推理
NanoLLM是一个开源工具包,专注于优化大型语言模型(LLM)的本地推理性能。它提供了类HuggingFace的API接口,支持模型量化、视觉语言模型、多模态代理、语音处理、向量数据库和检索增强生成(RAG)等功能。这个项目致力于简化LLM的部署和应用,特别适合需要高效本地推理的场景。NanoLLM目前的最新版本是24.7,可通过Docker容器方便部署。有兴趣的开发者可以访问项目的官方文档获取更多详细信息和使用指南。
ai.deploy.box - 多平台支持的深度学习模型推理工具箱
AI工具箱AiDBGithub开源项目推理框架模型部署深度学习
AiDB是一个方便的C++深度学习模型部署工具,兼容ONNXRUNTIME、MNN、NCNN、TNN、PaddleLite和OpenVINO等主流推理框架。该工具简化了多框架的集成,通过统一接口支持多平台操作,如Linux、MacOS和Android,以及多种编程语言如Python、Lua和Go。项目包含丰富的部署实例和演示,帮助用户快速进行模型部署。
nix-tts - 端到端文本转语音解决方案
GithubNix-TTS开源项目文本转语音知识蒸馏轻量级非自回归
Nix-TTS通过模块化知识蒸馏技术实现了高效轻量的端到端文本转语音合成,显著降低模型尺寸至5.23M参数,加速了处理速度,同时保持了良好的声音自然性。
Phi-3-mini-4k-instruct-bnb-4bit - 通过Unsloth工具提升深度学习模型微调速度与内存效率
GithubGoogle ColabHuggingfaceUnslothtransformers开源项目机器学习模型模型微调
项目通过提供免费、易于使用的Google Colab笔记本,便于在微调Phi-3.5、Llama 3.1、Mistral等深度学习模型时实现更高效的速度与内存管理,内存使用减少达74%。用户只需添加数据集并执行所有代码,便可获得加速至最高3.9倍的微调模型,支持导出多种格式或上传至Hugging Face平台。Colab快捷方式有效简化模型微调过程,适用于文本生成和对话模板。
dl_note - 深度学习全栈指南 从计算机视觉到大语言模型
GithubLLM开源项目推理部署模型压缩深度学习神经网络
dl_note项目是一个综合性深度学习资源库,涵盖从数学基础到模型部署的全过程。内容包括神经网络基础、深度学习技巧、模型压缩、推理优化及大语言模型等。项目注重实际应用,提供详细代码解析和实战经验,适合深度学习技术的学习者和从业者参考使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号