Project Icon

satclip

全球通用地理位置编码器

SatCLIP是一个基于卫星图像的地理位置编码器,通过对比学习将图像与位置匹配。该项目使用球谐函数进行位置编码,支持多种视觉编码器,适用于空间分析和图像定位等任务。SatCLIP提供预训练模型、示例代码和S2-100K数据集,便于研究人员开展地理空间分析和机器学习应用,为全球尺度的地理信息处理开辟新途径。

Geo-SAM - 地理图像实时分割QGIS插件,实现毫秒级响应
Geo SAMGithubQGIS插件SAM模型图像分割开源项目遥感图像
Geo-SAM是一个基于Segment Anything Model的QGIS插件,用于地理空间图像分割和地貌标记。通过预编码图像特征和精简模型,实现普通笔记本CPU上毫秒级的实时交互式分割。插件包含图像编码和交互式分割两个模块,支持多波段图像处理,无需编程即可使用。Geo-SAM提高了地理图像处理效率,为地理空间分析提供了便捷工具。
CLIP-ViT-g-14-laion2B-s12B-b42K - 用于零样本图像分类的先进研究工具
CLIP ViT-g/14GithubHuggingfaceLAION-5B图像分类多模态模型开源项目模型零样本学习
该模型专为研究社区而设计,采用LAION-5B数据集中的英语子集进行训练。它帮助研究人员探索零样本与任意图像分类的可能性,适用于跨学科的研究。该模型仅推荐用于研究目的,不适合用于商业化或未经测试的环境,并强调确保其安全和适当使用。
CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup - ConvNeXt-Large CLIP模型提升零样本图像分类性能
CLIPConvNeXtGithubHuggingface图像分类开源项目机器学习模型零样本学习
本模型基于LAION-2B数据集训练,采用320x320分辨率的ConvNeXt-Large架构和权重平均技术。在ImageNet-1k零样本分类任务上,准确率达到76.9%,超越了256x256分辨率版本。模型效率高于OpenAI的L/14-336,可应用于零样本图像分类、图文检索等任务。该项目为研究人员提供了强大的视觉-语言表征工具,助力探索大规模多模态模型。
siglip-base-patch16-512 - 采用Sigmoid损失函数的开源计算机视觉模型
GithubHuggingfaceSigLIP图像分类图文匹配开源项目模型深度学习计算机视觉
SigLIP在CLIP架构基础上改进了损失函数设计,使用Sigmoid损失函数处理图像-文本对训练。该模型在WebLI数据集上预训练,支持512x512分辨率的图像输入,主要应用于零样本图像分类和图文检索。相比CLIP,新的损失函数无需全局相似度归一化,使模型在不同批量规模下都能保持稳定表现。
xclip-base-patch32 - X-CLIP视频语言理解模型在Kinetics-400数据集上的应用
GithubHuggingfaceX-CLIP开源项目模型深度学习自然语言处理视频分类计算机视觉
xclip-base-patch32是一个基于CLIP架构的视频语言理解模型,通过Kinetics-400数据集进行全监督训练。该模型支持零样本、少样本及全监督视频分类,以及视频文本检索等任务。在224x224分辨率和每视频8帧的训练条件下,模型在Kinetics-400测试集上达到80.4%的top-1准确率和95.0%的top-5准确率,展现出优秀的视频分类性能。
Picarta - AI照片地理定位平台
AI工具APIPicarta人工智能图片定位地理定位
Picarta是一个基于AI的照片地理定位平台,专注于人工智能图像定位和照片GPS预测。通过分析上传的图像,该工具能准确预测照片的拍摄地点和GPS坐标。Picarta不仅为摄影和旅行爱好者提供便利,还广泛应用于研究、探索和决策领域。平台提供API服务,支持图像GPS定位、EXIF数据提取和地标识别,为用户提供全面的图像地理信息解决方案。
CLIP-ViT-B-16-DataComp.XL-s13B-b90K - 多模态模型CLIP ViT-B/16的零样本图像分类解析
CLIPGithubHuggingface图像生成开源项目数据集模型训练数据零样本图像分类
CLIP ViT-B/16模采用DataComp-1B数据集训练,并结合OpenCLIP工具,旨在促进研究者对零样本图像分类的理解。该模型在ImageNet-1k数据集上实现了73.5%的零样本准确率,展示了其在多领域研究中的潜力和挑战。由于数据集仍未完全筛选,建议仅限于学术研究使用。
CLIPSelf - 视觉Transformer自蒸馏实现开放词汇密集预测
CLIPSelfCOCOGithub密集预测开放词汇开源项目视觉Transformer
CLIPSelf项目提出创新自蒸馏方法,使视觉Transformer能进行开放词汇密集预测。该方法利用模型自身知识蒸馏,无需标注数据,提升了目标检测和实例分割等任务性能。项目开源代码和模型,提供详细训练测试说明,为计算机视觉研究提供重要资源。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
clip-guided-diffusion - 文本生成图像,多功能扩散模型
AI绘图CLIP Guided DiffusionGithubKatherine Crowsonpyglide图像生成开源项目
CLIP Guided Diffusion项目提供文本生成图像功能,支持多种参数和提示词权重设置。此项目采用高效扩散模型,通过命令行或Python接口操作,支持GPU加速,提供丰富的图像尺寸和调校选项,适合生成高质量多样化的视觉内容。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号