Project Icon

swin-base-patch4-window7-224

微软开源分层视觉Transformer图像分类模型

Swin Transformer是Microsoft开发的图像分类模型,通过层级特征图构建和局部窗口注意力机制实现线性计算复杂度。模型在ImageNet-1k数据集上完成224x224分辨率训练,可作为通用主干网络支持图像分类和密集识别任务。其创新的窗口划分策略使模型在处理大尺寸图像时具有更高的效率。

vit_base_patch16_224.augreg2_in21k_ft_in1k - 高性能Vision Transformer图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelstimm图像分类开源项目模型
该模型基于Vision Transformer架构,在ImageNet-21k上预训练并在ImageNet-1k上微调,采用额外的数据增强和正则化技术。适用于图像分类和特征提取,具有8660万参数,支持224x224输入尺寸。模型在性能和效率间取得平衡,可满足多样化的计算机视觉任务需求。
vit_small_patch14_reg4_dinov2.lvd142m - 基于自监督学习的视觉Transformer用于图像特征提取和分类
GithubHuggingfaceVision Transformer图像分类图像特征开源项目模型深度学习自监督学习
该Vision Transformer (ViT) 图像特征模型通过自监督学习进行预训练,基于LVD-142M数据集并采用DINOv2方法。模型专为图像分类和特征提取设计,包含22.1M参数和29.6 GMAC的运算能力。其注册方法增强了处理518x518像素图像的效果,DINOv2技术有助于无监督视觉特征学习。此模型在图像嵌入应用中表现优异,并支持多种视觉分析与研究。用户可使用timm库简单调用和部署模型,适合多种机器学习场景。
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k - EVA02视觉Transformer的图像分类与特征提取模型
EVA02GithubHuggingfaceImageNet图像分类开源项目模型模型微调视觉变换器
EVA02是一款基于视觉Transformer架构的图像分类和特征提取模型。它结合了平均池化、SwiGLU和旋转位置嵌入技术,在ImageNet-22k数据集上进行预训练并在ImageNet-1k上微调。兼容timm库,以确保在不同设备上的一致性和高效性,广泛适用于多种图像分类和特征提取任务。
vit_base_patch16_224.orig_in21k - Vision Transformer图像特征提取模型无分类头版本
GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取预训练模型
vit_base_patch16_224.orig_in21k是一个基于Vision Transformer架构的图像特征提取模型,在ImageNet-21k数据集上预训练。模型采用16x16图像块处理,支持224x224输入尺寸,包含8580万参数。移除分类头设计使其专注于特征提取,适合迁移学习和微调。通过timm库可轻松应用于图像分类和特征提取任务,为计算机视觉研究提供有力支持。
vit-tiny-patch16-224 - 轻量级ViT模型实现高效图像分类
GithubHugging FaceHuggingfaceImageNetVision Transformer图像分类开源项目权重转换模型
vit-tiny-patch16-224是一个轻量级视觉transformer模型,专注于图像分类任务。这个模型采用16x16的patch大小和224x224的输入分辨率,在保持分类准确性的同时大幅降低了计算资源需求。其小型结构使其特别适合在资源受限环境中使用或需要快速推理的场景。值得注意的是,该模型是基于Google的ViT架构,由第三方研究者使用timm仓库的权重进行转换和发布。
vit-large-patch16-224-in21k - 基于ImageNet-21k预训练的大型Vision Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型计算机视觉预训练模型
该模型是在ImageNet-21k数据集(1400万图像,21843类别)上预训练的大型Vision Transformer (ViT)。它采用Transformer架构,将224x224分辨率的图像分割成16x16的patch序列进行处理。模型可提取强大的图像特征,适用于分类等多种下游视觉任务。用户可直接用于图像嵌入或在特定任务上微调。
vit_base_patch32_clip_384.openai_ft_in12k_in1k - 采用ViT技术的视觉Transformer模型
Fine-tuningGithubHuggingfaceVision Transformertimm图像分类开源项目模型预训练
这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。
deit-tiny-patch16-224 - 高效小型视觉Transformer模型用于图像分类
DeiTGithubHuggingfaceImageNet图像分类图像处理开源项目模型深度学习
DeiT-tiny-patch16-224是一个在ImageNet-1k数据集上训练的高效视觉Transformer模型。该模型仅有5M参数,却在ImageNet top-1分类准确率上达到72.2%。它可处理224x224分辨率的图像输入,输出1000个ImageNet类别的预测结果,适用于各种图像分类任务。
deit-base-distilled-patch16-224 - DeiT模型通过蒸馏技术提升ImageNet图像分类性能
DeiTGithubHuggingfaceImageNet图像分类开源项目模型蒸馏视觉Transformer
DeiT-base-distilled-patch16-224是一种基于Vision Transformer的图像分类模型,通过蒸馏技术从CNN教师模型中学习。该模型在ImageNet-1k数据集上进行预训练和微调,在224x224分辨率下实现83.4%的top-1准确率。模型采用16x16图像块嵌入和蒸馏token,适用于多种计算机视觉任务,尤其在图像分类领域表现优异。
vit_base_patch16_384.augreg_in21k_ft_in1k - Vision Transformer用于图像分类和特征提取的先进模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
此Vision Transformer模型专注于图像分类和特征提取任务。经ImageNet-21k预训练和ImageNet-1k微调,采用先进的数据增强和正则化方法。支持384x384像素输入,拥有8690万参数。不仅可进行图像分类,还能生成图像嵌入。源自Google Research,经Ross Wightman移植到PyTorch,现已成为timm库的重要组成部分。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号