Project Icon

wavlm-base-sv

WavLM预训练模型声纹识别与说话人验证系统

WavLM是Microsoft开发的说话人验证预训练模型,基于16kHz采样语音训练,使用960小时Librispeech数据集预训练,并在VoxCeleb1数据集上进行X-Vector架构微调。模型通过话语和说话人对比学习,实现语音特征提取、身份验证及声纹识别。

wav2vec2-xls-r-300m - Facebook开发的大规模多语言预训练语音模型
GithubHuggingfaceXLS-Rwav2vec 2.0多语言模型开源项目模型语音识别预训练模型
wav2vec2-xls-r-300m是Facebook AI研发的大规模多语言预训练语音模型。该模型在436,000小时的未标记语音数据上预训练,涵盖128种语言,采用wav2vec 2.0目标函数,拥有3亿参数。它可应用于自动语音识别、翻译和分类等任务,在CoVoST-2语音翻译基准测试中显著提升了性能。
wav2vec2-conformer-rope-large-960h-ft - Wav2Vec2 Conformer模型在Librispeech数据集上的语音识别应用
ConformerGithubHuggingfaceLibriSpeechWav2Vec2开源项目模型自然语言处理语音识别
这是一个基于Wav2Vec2 Conformer架构的语音识别模型,采用旋转位置嵌入技术,在Librispeech数据集的960小时音频上完成预训练和微调。模型在Librispeech测试集上表现优异,'clean'和'other'子集的词错误率分别为1.96%和3.98%。支持16kHz采样的语音输入,适用于精确的语音转文本任务。
wav2vec2-large-xlsr-53-english - XLSR-53微调的英语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型自然语言处理语音识别
该模型基于wav2vec2-large-xlsr-53在Common Voice 6.1英语数据集上微调而来。在Common Voice英语测试集上,模型达到19.06%词错率和7.69%字符错误率。支持16kHz采样率语音输入,可单独使用或结合语言模型。提供HuggingSound库和自定义脚本的Python示例代码,方便用户进行语音识别。
wav2vec2-xls-r-1b - 大规模多语言语音预训练模型支持128种语言处理
GithubHuggingfaceXLS-R多语言模型开源项目模型语音处理语音识别预训练
Wav2Vec2-XLS-R-1B是Facebook AI开发的大规模多语言语音预训练模型,拥有10亿参数。该模型在436K小时的公开语音数据上训练,涵盖128种语言。在CoVoST-2语音翻译基准测试中平均提升7.4 BLEU分,BABEL等语音识别任务错误率降低20%-33%。适用于语音识别、翻译和分类等任务,需要16kHz采样率的语音输入进行微调。
wav2vec2-base-superb-er - 基于Wav2Vec2的语音情感识别模型实现高精度声学特征提取
GithubHuggingfaceIEMOCAPSUPERBWav2Vec2开源项目情感识别模型语音识别
wav2vec2-base-superb-er是一个针对SUPERB情感识别任务优化的语音情感识别模型。该模型可从16kHz采样的语音中提取声学特征,识别说话者的情感状态。经IEMOCAP数据集训练后,模型能识别4种主要情感类别,测试集识别准确率为62.58%。模型提供pipeline接口和直接调用方式,便于快速部署语音情感分析应用。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
wav2vec2-base-superb-ks - 高效的关键词识别音频分类模型
GithubHuggingfaceSUPERBWav2Vec2关键词识别开源项目模型语音命令音频分类
Wav2Vec2-Base模型支持SUPERB关键字识别任务,具备高准确性和快速响应的特点。该模型预训练于16kHz语音音频,采用Speech Commands数据集,通过Hugging Face的管道实现关键词检测,适应实时设备应用。
wav2vec2-large-xlsr-53-gender-recognition-librispeech - Wav2Vec2模型在Librispeech数据集上的音频性别识别应用
GithubHuggingfaceLibrispeechwav2vec2开源项目性别识别模型深度学习语音识别
这是一个基于facebook/wav2vec2-xls-r-300m模型在Librispeech-clean-100数据集上微调的音频性别识别模型。模型在评估集上达到0.9993的F1分数,性能表现优异。项目提供了完整的推理代码,包括自定义数据集处理和批量音频处理功能。训练过程采用了Adam优化器和线性学习率调度等策略。该模型为音频性别识别任务提供了一个高效可靠的解决方案。
wav2vec2-base-vi - 基于wav2vec2的越南语自监督学习模型提升语音识别性能
GithubHuggingfaceWav2Vec2开源项目模型自监督学习语音识别越南语预训练模型
该项目开发了基于wav2vec2架构的越南语自监督学习模型。模型使用13000小时的多样化越南语YouTube音频数据进行预训练,包括清晰音频、噪声音频和对话等。项目提供95M参数的基础版和317M参数的大型版预训练模型。在VLSP 2020 ASR数据集上,大型模型配合5-gram语言模型可将词错率降至5.32%。这些模型为越南语语音识别等下游任务提供了有力支持。
wav2vec2-large-xlsr-53-chinese-zh-cn - 中文自动语音识别模型提供广泛应用支持
Common VoiceGithubHuggingSoundHuggingfaceXLSR Wav2Vec2开源项目模型语音识别语音转录
该模型基于Common Voice、CSS10和ST-CMDS数据集,对facebook的wav2vec2-large-xlsr-53进行了微调,以实现中文自动语音识别。模型能够处理16kHz采样率的语音输入,可通过HuggingSound库直接进行语音转录或使用定制推理脚本。评估结果显示,模型在Common Voice测试数据集上WER为82.37%,CER为19.03%。感谢OVHcloud提供的GPU支持,该模型适用于医药、教育等领域语音数据处理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号