Project Icon

Neuromorphic-Computing-Guide

神经形态计算指南 从原理到前沿应用

本指南系统介绍神经形态计算的基础理论、开发工具和应用领域。内容涵盖机器学习、深度学习、强化学习等核心技术,以及计算机视觉、自然语言处理等实际应用。同时阐述相关电路和电磁学知识,并提供CUDA、MATLAB、Python等编程资源。适合神经形态计算领域的开发者和研究人员参考学习,全面展现了这一前沿技术的发展现状。


Neuromorphic Computing Guide

followers

Maintenance Last-Commit

A guide covering Neuromorphic Computing including the applications, libraries and tools that will make you better and more efficient with Neuromorphic Computing development.

Note: You can easily convert this markdown file to a PDF in VSCode using this handy extension Markdown PDF. Also, checkout the mdBook version Neuromorphic Computing Guide mdBook (Special thanks to jonathanwoollett-light).



Types of Neural Networks

Table of Contents

  1. Getting Stat\rted with Neuromorphic Computing

  2. Neuromorphic Computing Tools, Libraries, and Frameworks

  3. Algorithms

  4. Machine Learning

  5. Deep Learning Development

  6. Reinforcement Learning Development

  7. Computer Vision Development

  8. Natural Language Processing (NLP) Development

  9. Bioinformatics

  10. Robotics Development

  11. Electric charge, field, and potential

    • Charge and electric force (Coulomb's law): Electric charge, field, and potential
    • Electric field: Electric charge, field, and potential
    • Electric potential energy, electric potential, and voltage: Electric charge, field, and potential
  12. Circuits

    • Ohm's law and circuits with resistors: Circuits
    • Circuits with capacitors: Circuits
  13. Magnetic forces, magnetic fields, and Faraday's law

    • Magnets and Magnetic Force: Magnetic forces, magnetic fields, and Faraday's law
    • Magnetic field created by a current: Magnetic forces, magnetic fields, and Faraday's law
    • Electric motors: Magnetic forces, magnetic fields, and Faraday's law
    • Magnetic flux and Faraday's law
  14. Electromagnetic waves and interference

    • Introduction to electromagnetic waves: Electromagnetic waves and interference
    • Interference of electromagnetic waves
  15. CUDA Development

  16. MATLAB Development

  17. Python Development

  18. C/C++ Development

Getting Started with Neuromorphic Computing

Back to the Top

Neuromorphic Computing is the use of very large scale integration (VLSI) systems containing electronic analog circuits to simulate the neuro-biological architectures present in the human brain ad nervous system.


Intel Loihi 2, its second-generation neuromorphic research chip.


The Akida Neuromorphic System-on-Chip (NSoC) developed by BrainChip.

Developer Resources

Back to the Top

Online Training Courses

Back to the Top

Books

Back to the Top

YouTube videos

Back to the Top

Neuromorphic Computing Tools, Libraries, and Frameworks

Back to the Top

Lava is an open-source software framework for developing neuro-inspired applications and mapping them to neuromorphic hardware. Lava provides developers with the tools and abstractions to develop applications that fully exploit the principles of neural computation. Constrained in this way, like the brain, Lava applications allow neuromorphic platforms to intelligently process, learn from, and respond to real-world data with great gains in energy efficiency and speed compared to conventional computer architectures.

Lava DL is an enhanced version of SLAYER. Some enhancements include support for recurrent network structures, a wider variety of neuron models and synaptic connections (complete list of features here). This version of SLAYER is built on top of the PyTorch deep learning framework, similar to its predecessor.

Lava Dynamic Neural Fields (DNF) are neural attractor networks that generate stabilized activity patterns in recurrently connected populations of neurons. These activity patterns form the basis of neural representations, decision making, working memory, and learning. DNFs are the fundamental building block of dynamic field theory, a mathematical and conceptual framework for modeling cognitive processes in a closed behavioral loop.

Neuromorphic Constraint Optimization is a library of solvers that

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号