Project Icon

torchxrayvision

胸部X光影像分析工具库

TorchXRayVision是一个开源的胸部X光影像分析工具库,为多个公开数据集提供统一接口和预处理流程。它包含多种预训练模型,可用于快速分析大型数据集、实现少样本学习,以及在多个外部数据集上评估算法性能。该库旨在简化胸部X光影像研究工作流程,提高分析效率。

🚨 Paper now online! https://arxiv.org/abs/2111.00595

🚨 Documentation now online! https://mlmed.org/torchxrayvision/

TorchXRayVision

What is it?

A library for chest X-ray datasets and models. Including pre-trained models.

TorchXRayVision is an open source software library for working with chest X-ray datasets and deep learning models. It provides a common interface and common pre-processing chain for a wide set of publicly available chest X-ray datasets. In addition, a number of classification and representation learning models with different architectures, trained on different data combinations, are available through the library to serve as baselines or feature extractors.

  • In the case of researchers addressing clinical questions it is a waste of time for them to train models from scratch. To address this, TorchXRayVision provides pre-trained models which are trained on large cohorts of data and enables 1) rapid analysis of large datasets 2) feature reuse for few-shot learning.
  • In the case of researchers developing algorithms it is important to robustly evaluate models using multiple external datasets. Metadata associated with each dataset can vary greatly which makes it difficult to apply methods to multiple datasets. TorchXRayVision provides access to many datasets in a uniform way so that they can be swapped out with a single line of code. These datasets can also be merged and filtered to construct specific distributional shifts for studying generalization.

Twitter: @torchxrayvision

Getting started

$ pip install torchxrayvision
import torchxrayvision as xrv
import skimage, torch, torchvision

# Prepare the image:
img = skimage.io.imread("16747_3_1.jpg")
img = xrv.datasets.normalize(img, 255) # convert 8-bit image to [-1024, 1024] range
img = img.mean(2)[None, ...] # Make single color channel

transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(),xrv.datasets.XRayResizer(224)])

img = transform(img)
img = torch.from_numpy(img)

# Load model and process image
model = xrv.models.DenseNet(weights="densenet121-res224-all")
outputs = model(img[None,...]) # or model.features(img[None,...]) 

# Print results
dict(zip(model.pathologies,outputs[0].detach().numpy()))

{'Atelectasis': 0.32797316,
 'Consolidation': 0.42933336,
 'Infiltration': 0.5316924,
 'Pneumothorax': 0.28849724,
 'Edema': 0.024142697,
 'Emphysema': 0.5011832,
 'Fibrosis': 0.51887786,
 'Effusion': 0.27805611,
 'Pneumonia': 0.18569896,
 'Pleural_Thickening': 0.24489835,
 'Cardiomegaly': 0.3645515,
 'Nodule': 0.68982,
 'Mass': 0.6392845,
 'Hernia': 0.00993878,
 'Lung Lesion': 0.011150705,
 'Fracture': 0.51916164,
 'Lung Opacity': 0.59073937,
 'Enlarged Cardiomediastinum': 0.27218717}

A sample script to process images usings pretrained models is process_image.py

$ python3 process_image.py ../tests/00000001_000.png
{'preds': {'Atelectasis': 0.50500506,
           'Cardiomegaly': 0.6600903,
           'Consolidation': 0.30575264,
           'Edema': 0.274184,
           'Effusion': 0.4026162,
           'Emphysema': 0.5036339,
           'Enlarged Cardiomediastinum': 0.40989172,
           'Fibrosis': 0.53293407,
           'Fracture': 0.32376793,
           'Hernia': 0.011924741,
           'Infiltration': 0.5154413,
           'Lung Lesion': 0.22231922,
           'Lung Opacity': 0.2772148,
           'Mass': 0.32237658,
           'Nodule': 0.5091847,
           'Pleural_Thickening': 0.5102617,
           'Pneumonia': 0.30947986,
           'Pneumothorax': 0.24847917}}

Models (demo notebook)

Specify weights for pretrained models (currently all DenseNet121) Note: Each pretrained model has 18 outputs. The all model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field {dataset}.pathologies on the dataset that corresponds to the weights.


## 224x224 models
model = xrv.models.DenseNet(weights="densenet121-res224-all")
model = xrv.models.DenseNet(weights="densenet121-res224-rsna") # RSNA Pneumonia Challenge
model = xrv.models.DenseNet(weights="densenet121-res224-nih") # NIH chest X-ray8
model = xrv.models.DenseNet(weights="densenet121-res224-pc") # PadChest (University of Alicante)
model = xrv.models.DenseNet(weights="densenet121-res224-chex") # CheXpert (Stanford)
model = xrv.models.DenseNet(weights="densenet121-res224-mimic_nb") # MIMIC-CXR (MIT)
model = xrv.models.DenseNet(weights="densenet121-res224-mimic_ch") # MIMIC-CXR (MIT)

# 512x512 models
model = xrv.models.ResNet(weights="resnet50-res512-all")

# DenseNet121 from JF Healthcare for the CheXpert competition
model = xrv.baseline_models.jfhealthcare.DenseNet() 

# Official Stanford CheXpert model
model = xrv.baseline_models.chexpert.DenseNet(weights_zip="chexpert_weights.zip")

# Emory HITI lab race prediction model
model = xrv.baseline_models.emory_hiti.RaceModel()
model.targets -> ["Asian", "Black", "White"]

# Riken age prediction model
model = xrv.baseline_models.riken.AgeModel()

Benchmarks of the modes are here: BENCHMARKS.md and the performance of some of the models can be seen in this paper arxiv.org/abs/2002.02497.

Autoencoders

You can also load a pre-trained autoencoder that is trained on the PadChest, NIH, CheXpert, and MIMIC datasets.

ae = xrv.autoencoders.ResNetAE(weights="101-elastic")
z = ae.encode(image)
image2 = ae.decode(z)

Segmentation

You can load pretrained anatomical segmentation models. Demo Notebook

seg_model = xrv.baseline_models.chestx_det.PSPNet()
output = seg_model(image)
output.shape # [1, 14, 512, 512]
seg_model.targets # ['Left Clavicle', 'Right Clavicle', 'Left Scapula', 'Right Scapula',
                  #  'Left Lung', 'Right Lung', 'Left Hilus Pulmonis', 'Right Hilus Pulmonis',
                  #  'Heart', 'Aorta', 'Facies Diaphragmatica', 'Mediastinum',  'Weasand', 'Spine']

Datasets

View docstrings for more detail on each dataset and Demo notebook and Example loading script

transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(),
                                            xrv.datasets.XRayResizer(224)])

# RSNA Pneumonia Detection Challenge. https://pubs.rsna.org/doi/full/10.1148/ryai.2019180041
d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="path to stage_2_train_images_jpg",
                                       transform=transform)
                
# CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. https://arxiv.org/abs/1901.07031             
d_chex = xrv.datasets.CheX_Dataset(imgpath="path to CheXpert-v1.0-small",
                                   csvpath="path to CheXpert-v1.0-small/train.csv",
                                   transform=transform)

# National Institutes of Health ChestX-ray8 dataset. https://arxiv.org/abs/1705.02315
d_nih = xrv.datasets.NIH_Dataset(imgpath="path to NIH images")

# A relabelling of a subset of NIH images from: https://pubs.rsna.org/doi/10.1148/radiol.2019191293
d_nih2 = xrv.datasets.NIH_Google_Dataset(imgpath="path to NIH images")

# PadChest: A large chest x-ray image dataset with multi-label annotated reports. https://arxiv.org/abs/1901.07441
d_pc = xrv.datasets.PC_Dataset(imgpath="path to image folder")

# COVID-19 Image Data Collection. https://arxiv.org/abs/2006.11988
d_covid19 = xrv.datasets.COVID19_Dataset() # specify imgpath and csvpath for the dataset

# SIIM Pneumothorax Dataset. https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
d_siim = xrv.datasets.SIIM_Pneumothorax_Dataset(imgpath="dicom-images-train/",
                                                csvpath="train-rle.csv")

# VinDr-CXR: An open dataset of chest X-rays with radiologist's annotations. https://arxiv.org/abs/2012.15029
d_vin = xrv.datasets.VinBrain_Dataset(imgpath=".../train",
                                      csvpath=".../train.csv")

# National Library of Medicine Tuberculosis Datasets. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233/
d_nlmtb = xrv.datasets.NLMTB_Dataset(imgpath="path to MontgomerySet or ChinaSet_AllFiles")

Dataset fields

Each dataset contains a number of fields. These fields are maintained when xrv.datasets.Subset_Dataset and xrv.datasets.Merge_Dataset are used.

  • .pathologies This field is a list of the pathologies contained in this dataset that will be contained in the .labels field ].

  • .labels This field contains a 1,0, or NaN for each label defined in .pathologies.

  • .csv This field is a pandas DataFrame of the metadata csv file that comes with the data. Each row aligns with the elements of the dataset so indexing using .iloc will work.

If possible, each dataset's .csv will have some common fields of the csv. These will be aligned when The list is as follows:

  • csv.patientid A unique id that will uniqely identify samples in this dataset

  • csv.offset_day_int An integer time offset for the image in the unit of days. This is expected to be for relative times and has no absolute meaning although for some datasets it is the epoch time.

  • csv.age_years The age of the patient in years.

  • csv.sex_male If the patient is male

  • csv.sex_female If the patient is female

Dataset tools

relabel_dataset will align labels to have the same order as the pathologies argument.

xrv.datasets.relabel_dataset(xrv.datasets.default_pathologies , d_nih) # has side effects

specify a subset of views (demo notebook)

d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="...",
                                               views=["PA","AP","AP Supine"])

specify only 1 image per patient

d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="...",
                                               unique_patients=True)

obtain summary statistics per dataset

d_chex = xrv.datasets.CheX_Dataset(imgpath="CheXpert-v1.0-small",
                                   csvpath="CheXpert-v1.0-small/train.csv",
                                 views=["PA","AP"], unique_patients=False)

CheX_Dataset num_samples=191010 views=['PA', 'AP']
{'Atelectasis': {0.0: 17621, 1.0: 29718},
 'Cardiomegaly': {0.0: 22645, 1.0: 23384},
 'Consolidation': {0.0: 30463, 1.0: 12982},
 'Edema': {0.0: 29449, 1.0: 49674},
 'Effusion': {0.0: 34376, 1.0: 76894},
 'Enlarged Cardiomediastinum': {0.0: 26527, 1.0: 9186},
 'Fracture': {0.0: 18111, 1.0: 7434},
 'Lung Lesion': {0.0: 17523, 1.0: 7040},
 'Lung Opacity': {0.0: 20165, 1.0: 94207},
 'Pleural Other': {0.0: 17166, 1.0: 2503},
 'Pneumonia': {0.0: 18105, 1.0: 4674},
 'Pneumothorax': {0.0: 54165, 1.0: 17693},
 'Support Devices': {0.0: 21757, 1.0: 99747}}

Pathology masks (demo notebook)

Masks are available in the following datasets:

xrv.datasets.RSNA_Pneumonia_Dataset() # for Lung Opacity
xrv.datasets.SIIM_Pneumothorax_Dataset() # for Pneumothorax
xrv.datasets.NIH_Dataset() # for Cardiomegaly, Mass, Effusion, ...

Example usage:

d_rsna = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="stage_2_train_images_jpg", 
                                            views=["PA","AP"],
                                            pathology_masks=True)
                                            
# The has_masks column will let you know if any masks exist for that sample
d_rsna.csv.has_masks.value_counts()
False    20672
True      6012       

# Each sample will have a pathology_masks dictionary where the index 
# of each pathology will correspond to a mask of that pathology (if it exists).
# There may be more than one mask per sample. But only one per pathology.
sample["pathology_masks"][d_rsna.pathologies.index("Lung Opacity")]

it also works with data_augmentation if you pass in data_aug=data_transforms to the dataloader. The random seed is matched to align calls for the image and the mask.

Distribution shift tools (demo notebook)

The class xrv.datasets.CovariateDataset takes two datasets and two arrays representing the labels. The samples will be returned with the desired ratio of images from each site. The goal here is to simulate a covariate shift to make a model focus on an incorrect feature. Then the shift can be reversed in the validation data causing a catastrophic failure in generalization performance.

ratio=0.0 means images from d1 will have a positive label ratio=0.5 means images from d1 will have half of the positive labels ratio=1.0 means images from d1 will have no positive label

With any ratio the number of samples returned will be the same.

d = xrv.datasets.CovariateDataset(d1 = # dataset1 with a specific condition
                                  d1_target = #target label to predict,
                                  d2 = # dataset2 with
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号