Project Icon

OpenAI-CLIP

从零开始实现CLIP模型:探索文本与图像的多模态关联

本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。

ViT-B-32__openai - CLIP模型的ONNX导出版本用于图像和文本嵌入生成
CLIPGithubHuggingfaceImmich图像编码器开源项目文本编码器模型自托管照片库
ViT-B-32__openai项目是CLIP模型的ONNX导出版本,将视觉和文本编码器分离为独立模型。这种设计适用于生成图像和文本嵌入,特别针对Immich自托管照片库。该项目可用于处理大量图像和文本数据,有助于改进图像检索和跨模态搜索功能。
clip_playground - 探索CLIP模型的多种应用包括GradCAM可视化、零样本检测和验证码破解
CLIPCaptcha SolverColabGithubGradCAMZero-shot Detection开源项目
这个项目展示了CLIP模型的不同应用,包括GradCAM可视化、简单和智能的零样本检测以及验证码破解。用户可以通过Colab链接在线体验各项功能,并调整参数和检测查询以深入探索模型潜力。项目日志定期更新,包含reCAPTCHA绘图改进和检测参数调整,确保用户获得最佳应用体验。
Clip Interrogator AI - 多模态图像分析和描述生成系统
AI图像分析AI工具CLIP Interrogator图像描述生成机器学习自然语言处理
Clip Interrogator AI是一个集成BLIP和CLIP模型的图像分析系统。它能自动解析图像内容,生成详细的文本描述和标签。通过基础说明和'Flavors'系统,Clip Interrogator AI提供全面的图像解释。这一工具适用于需要深入理解或复制图像风格的场景,为AI图像生成提供精确提示。作为web应用,Clip Interrogator AI简化了复杂的图像分析过程。
fashion-clip - 专为时尚领域优化的对比语言视觉学习模型
CLIPFashionCLIPGithubHugging Face开源项目时尚行业模型
FashionCLIP是一个为时尚行业优化的CLIP模型,用于提升商品检索、分类和时尚分析的表现。通过超过70万对图像和文本数据进行微调,FashionCLIP在零样本场景下表现出色。更新版FashionCLIP 2.0采用更多训练数据,显著提高了FMNIST、KAGL和DEEP数据集的性能。项目提供开源代码和模型权重,可在Hugging Face上获取,并支持多种API和教程便于上手。
metaclip-h14-fullcc2.5b - 大规模视觉语言模型基于25亿CommonCrawl数据训练
GithubHuggingfaceMetaCLIP多模态学习开源项目模型自然语言处理计算机视觉零样本分类
MetaCLIP是一个基于25亿CommonCrawl数据点训练的大规模视觉语言模型。该模型由Xu等人在《Demystifying CLIP Data》论文中提出,旨在解析CLIP的数据准备流程。MetaCLIP支持图像与文本的联合嵌入,可应用于零样本图像分类、文本图像检索等任务。作为一个开源项目,MetaCLIP为研究人员提供了探索大规模视觉语言模型的新方向,有助于推进计算机视觉和自然语言处理领域的发展。
metaclip-b16-fullcc2.5b - CLIP训练数据解构与MetaCLIP模型应用
CommonCrawlGithubHugging FaceHuggingfaceMetaCLIP图像分类开源项目数据管理模型
MetaCLIP模型利用25亿个CommonCrawl数据点,在共享嵌入空间中实现图像与文本的链接应用。实现零样本图像分类、文本驱动的图像检索及图像驱动的文本检索。《Demystifying CLIP Data》论文揭示了CLIP数据训练方法,促进多模态应用发展。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup - CLIP ConvNeXt-XXLarge模型在零样本图像分类上的卓越性能
CLIPConvNeXtGithubHuggingface开源项目模型深度学习计算机视觉零样本图像分类
CLIP ConvNeXt-XXLarge是基于LAION-2B数据集训练的大规模视觉-语言模型。它在ImageNet零样本分类任务中实现79.4%的准确率,成为首个非ViT架构突破79%的CLIP模型。该模型结合847M参数的ConvNeXt-XXLarge图像塔和ViT-H-14规模的文本塔,在计算效率和性能间达到平衡,为视觉-语言模型研究开辟新方向。
chinese-clip-vit-base-patch16 - 中文数据驱动的多模态对比学习工具
Chinese-CLIPGithubHuggingface图像识别多模态检索开源项目模型深度学习零样本学习
项目通过ViT和RoBERTa实现了中文CLIP模型,支持图像和文本的嵌入计算及相似性分析,具备零样本学习和图文检索功能。该模型在多项基准测试中表现优秀,包括MUGE、Flickr30K-CN等。结合其官方API,用户可轻松实现多场景中的图文转换与识别。详细信息和实施教程可在GitHub获取。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg - 基于LAION-2B数据集的卷积神经网络达到79%零样本分类准确率
CLIPConvNextGithubHuggingface图像分类开源项目机器学习模型神经网络
CLIP ConvNeXt-XXLarge是一个在LAION-2B数据集上训练的大规模视觉语言模型,总参数量12亿,图像分辨率256x256。模型采用ConvNeXt-XXLarge图像结构和ViT-H-14规模的文本编码器,在ImageNet零样本分类上达到79%准确率。主要应用于图像分类、检索等研究任务。
ViT-L-14-CLIPA-datacomp1B - CLIPA-v2模型实现低成本高性能零样本图像分类
CLIPAGithubHuggingfaceOpenCLIP对比学习开源项目模型视觉语言模型零样本图像分类
ViT-L-14-CLIPA-datacomp1B是一个基于CLIPA-v2架构的视觉-语言模型,在datacomp1B数据集上训练。该模型采用对比学习方法,能够进行零样本图像分类,在ImageNet上实现81.1%的准确率。通过OpenCLIP库,用户可以方便地进行图像和文本的特征编码。这个模型不仅性能优异,还具有训练成本低的特点,为计算机视觉研究提供了新的发展方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号