Project Icon

ner-bert-german

基于BERT的德语命名实体识别模型实现精准NER分析

该模型通过对bert-base-multilingual-cased进行微调,实现德语文本中位置、组织和人名的识别。模型在wikiann数据集训练后,总体F1分数达0.8829,在人名实体识别方面表现尤为出色。模型使用Adam优化器和线性学习率调度器,经7轮训练完成。

bert-base-german-uncased - 基于多源语料库训练的德语BERT预训练模型
BERTGithubHuggingface开源项目德语模型数据预处理模型深度学习自然语言处理
巴伐利亚州立图书馆MDZ团队开发的德语BERT模型,基于维基百科、EU图书和开放字幕等数据集训练,数据规模达16GB、23亿tokens。模型提供大小写敏感和不敏感两个版本,原生支持Transformers库,预训练序列长度512。经实测在命名实体识别、词性标注等任务中表现优异,可广泛应用于德语NLP领域。
bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
gbert-base - 基于维基百科训练的高性能德语BERT预训练模型
BERTGithubHaystackHuggingface开源项目德语模型机器学习模型自然语言处理
gbert-base是一款德语BERT预训练模型,由原始German BERT与dbmdz BERT团队于2020年10月联合发布。模型使用维基百科、OPUS和OpenLegalData数据集进行训练,在GermEval18和GermEval14基准测试中取得了显著优于前代模型的性能表现。作为开源项目,该模型采用MIT许可证,可用于多种德语自然语言处理应用场景。
distilbert-NER - 一个精简、高效的命名实体识别模型
AI模型CoNLL-2003DistilBERTGithubHuggingfacedistilbert-NER命名实体识别开源项目模型
distilbert-NER是DistilBERT的精简版本,专为命名实体识别(NER)任务优化,能够识别地点、组织、人物等实体。相比BERT,参数更少,具备更小的模型体积和更高的速度,并在CoNLL-2003数据集上精细调优,具备良好的精度和性能。
bert-base-german-dbmdz-uncased - 支持不区分大小写文本处理的德语BERT预训练模型
BERTGithubHuggingface开源项目德语无大小写区分机器学习模型自然语言处理
这是一个专为德语设计的BERT预训练模型,主要特点是支持不区分大小写的文本处理。模型针对德语特点进行了优化,适用于各类德语自然语言处理任务,采用MIT许可证发布。该模型与dbmdz/bert-base-german-uncased模型相同,详细信息可参考其模型卡片。
nb-bert-base-ner - 挪威语BERT命名实体识别模型 适用NorNE数据集
BERTGithubHuggingfaceNorNE命名实体识别开源项目挪威语模型自然语言处理
nb-bert-base-ner是一个基于BERT的挪威语命名实体识别模型,通过NorNE数据集微调而成。此模型能够识别挪威语文本中的人名、地名等命名实体。开发者可借助Hugging Face的transformers库轻松集成和使用,项目还提供了简洁的示例代码,便于快速实现挪威语命名实体识别功能。
bert-base-turkish-cased-ner - 土耳其语BERT命名实体识别模型实现99.61%准确率
BERTGithubHuggingface命名实体识别土耳其语言模型开源项目模型模型训练自然语言处理
该项目提供了一个基于BERT的土耳其语命名实体识别模型。通过使用精选的土耳其NER数据集进行微调,模型能够识别人名、组织机构和地点等实体。在多个测试集上,模型展现出优异性能,总体F1分数为96.17%,准确率达99.61%。项目还提供了简洁的使用接口,便于集成到各种土耳其语自然语言处理任务中。
bert-base-swedish-cased-ner - BERT基础的瑞典语命名实体识别模型
ALBERTBERTGithubHuggingface命名实体识别开源项目模型瑞典语言模型自然语言处理
bert-base-swedish-cased-ner是瑞典国家图书馆开发的瑞典语命名实体识别模型。该模型基于BERT架构,使用大规模瑞典语语料库训练,并在SUC 3.0数据集上微调。它可识别人名、地点、组织等实体类型,支持瑞典语自然语言处理任务。研究人员可通过Hugging Face Transformers库调用此模型进行命名实体识别。
bcms-bertic-ner - BERTić微调模型实现BCMS语言的高效命名实体识别
BERTićGithubHuggingface命名实体识别巴尔干语言开源项目机器学习模型自然语言处理
bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号