Project Icon

seaborn

基于Python的统计数据可视化库 创建高质量图表

Seaborn是基于matplotlib的Python统计数据可视化库,提供高级接口绘制各类统计图形。支持Python 3.8+,依赖numpy、pandas等库。Seaborn可生成散点图、线图、条形图等多种图表,通过简洁API快速创建复杂可视化效果。适用于数据分析和科研报告等场景,有助于更好理解和展示数据。



seaborn: statistical data visualization

PyPI Version License DOI Tests Code Coverage

Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics.

Documentation

Online documentation is available at seaborn.pydata.org.

The docs include a tutorial, example gallery, API reference, FAQ, and other useful information.

To build the documentation locally, please refer to doc/README.md.

Dependencies

Seaborn supports Python 3.8+.

Installation requires numpy, pandas, and matplotlib. Some advanced statistical functionality requires scipy and/or statsmodels.

Installation

The latest stable release (and required dependencies) can be installed from PyPI:

pip install seaborn

It is also possible to include optional statistical dependencies:

pip install seaborn[stats]

Seaborn can also be installed with conda:

conda install seaborn

Note that the main anaconda repository lags PyPI in adding new releases, but conda-forge (-c conda-forge) typically updates quickly.

Citing

A paper describing seaborn has been published in the Journal of Open Source Software. The paper provides an introduction to the key features of the library, and it can be used as a citation if seaborn proves integral to a scientific publication.

Testing

Testing seaborn requires installing additional dependencies; they can be installed with the dev extra (e.g., pip install .[dev]).

To test the code, run make test in the source directory. This will exercise the unit tests (using pytest) and generate a coverage report.

Code style is enforced with flake8 using the settings in the setup.cfg file. Run make lint to check. Alternately, you can use pre-commit to automatically run lint checks on any files you are committing: just run pre-commit install to set it up, and then commit as usual going forward.

Development

Seaborn development takes place on Github: https://github.com/mwaskom/seaborn

Please submit bugs that you encounter to the issue tracker with a reproducible example demonstrating the problem. Questions about usage are more at home on StackOverflow, where there is a seaborn tag.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号