Project Icon

awesome-jax

自动微分与XLA在高性能机器学习中的应用

该页面收录了JAX相关的优质库、项目和资源,旨在帮助机器学习研究人员在GPU和TPU等加速器上实现高性能计算。资源涵盖神经网络库、强化学习工具和概率编程等多个领域,并提供了详细的库介绍、学术论文和教程。用户可以找到如Flax、Haiku、Objax等知名库,以及新兴的FedJAX、BRAX等库,适用于机器学习和科研项目中使用JAX进行快速原型开发和高效计算。

learned_optimization - 基于JAX的元学习优化器研究框架
GithubJAXlearned_optimization优化器元学习开源项目机器学习
learned_optimization是一个研究代码库,主要用于学习型优化器的训练、设计、评估和应用。该项目实现了多种优化器和训练算法,包括手工设计的优化器、学习型优化器、元训练任务以及ES、PES和截断反向传播等外部训练方法。项目提供了详细的文档和教程,包括Colab笔记本,方便用户快速入门。learned_optimization适用于元学习和动态系统训练的研究,为相关领域提供了功能丰富的工具。
jaxdf - JAX框架打造可微分物理模拟器
GithubJAXjaxdf偏微分方程开源项目数值模拟自动微分
jaxdf是基于JAX的开源框架,用于创建可微分数值模拟器。该框架支持任意离散化,主要应用于物理系统建模,如波传播和偏微分方程求解。jaxdf生成的纯函数模型可与JAX编写的可微分程序无缝集成,适用于神经网络层或物理损失函数。框架提供自定义算子、多种离散化方法,并附有详细文档和示例。
optax - JAX生态系统中的高效梯度处理与优化框架
GithubJAXOptax优化器开源项目梯度处理深度学习
Optax是JAX生态系统中的梯度处理和优化框架。它提供了经过严格测试的高效核心组件,支持研究人员灵活组合低级模块以构建自定义优化器。该库强调模块化设计,重视代码可读性和结构化,便于匹配标准优化方程。Optax实现了多种主流优化算法和损失函数,为机器学习研究和快速原型开发提供了有力支持。
jax-triton - JAX与Triton集成实现GPU计算加速
CUDAGPU加速GithubJAXTritonjax-triton开源项目
jax-triton项目实现了JAX和Triton的集成,让开发者能在JAX中使用Triton的GPU计算功能。通过triton_call函数,可在JAX编译函数中应用Triton内核,提高计算密集型任务效率。项目提供文档和示例,适合机器学习和科学计算领域的GPU计算优化需求。
evosax - 基于JAX的高性能进化策略框架
GithubJAXevosax优化算法开源项目机器学习进化策略
evosax是基于JAX的进化策略框架,通过XLA编译和自动向量化/并行化技术实现大规模进化策略的高效计算。它支持CMA-ES、OpenAI-ES等多种经典和现代神经进化算法,采用ask-evaluate-tell API设计。evosax兼容JAX的jit、vmap和lax.scan,可扩展至不同硬件加速器。该框架为进化计算研究和应用提供了高性能、灵活的工具。
llama-2-jax - 基于JAX的大语言模型高效实现
GithubJAXLlama 2大语言模型开源项目机器学习模型实现
这是一个利用JAX框架实现Llama 2模型的开源项目。该项目致力于提高模型训练和推理效率,构建高质量Transformer代码库,为自然语言处理领域提供有价值见解。项目功能包括参数转换、数据加载、模型架构实现等,并在持续开发训练和生成功能。这为研究人员和开发者提供了便捷的Llama 2模型研究与应用工具。
brax - 基于JAX的高性能物理引擎 适用于机器人和强化学习仿真
BraxGithubJAX仿真开源项目机器学习物理引擎
Brax是一款基于JAX的高性能物理引擎,专注于机器人、人体感知、材料科学和强化学习等领域的仿真应用。它支持单设备高效仿真和多设备并行仿真,无需依赖大型数据中心。Brax提供多种物理模拟管道,如MuJoCo XLA、广义坐标和基于位置的动力学,并统一API接口。此外,Brax集成了多种高效学习算法,能在短时间内完成智能体训练。
lineax - 基于JAX的线性求解和最小二乘优化库
GithubJAXLineaxPython库开源项目最小二乘法线性求解
Lineax是基于JAX开发的线性求解和最小二乘优化库,提供多种算法解决Ax = b问题。该库支持PyTree值矩阵和向量、通用线性算子及结构化矩阵,具备高效的求解器和稳定的梯度计算。Lineax优化了编译和运行性能,支持实值和复值输入,并集成JAX的自动微分、并行计算和硬件加速等功能。
gymnax - JAX驱动的高效强化学习环境集合
GithubJAXgymnax加速计算开源项目强化学习环境仿真
gymnax是基于JAX构建的强化学习环境库,充分利用JAX的即时编译和向量化功能,显著提升了传统gym API的性能。该库涵盖经典控制、bsuite和MinAtar等多种环境,支持精确控制环境参数。通过在加速器上并行处理环境和策略,gymnax实现了高效的强化学习实验,尤其适合大规模并行和元强化学习研究。
awesome - 综合技术资源库汇集优质开源项目与工具
AwesomeGitHubGithub开发者资源开源开源项目编程语言
Awesome项目是一个涵盖广泛的技术资源库,汇集了从JavaScript、Python到机器学习、区块链等热门领域的优质开源项目。这个由社区维护的平台为开发者提供了便捷的途径,助力他们快速找到高质量的开发工具、框架和学习资料。通过定期更新,确保技术爱好者能够获取最新、最实用的资源信息。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号