Project Icon

nerfacc

NeRF训练与推理的PyTorch加速工具箱

NerfAcc是一款基于PyTorch的NeRF加速工具箱,专注于辐射场体积渲染中的高效采样。这款工具无需大幅度修改现有代码,即可显著加速多种NeRF模型的训练过程。NerfAcc提供纯Python接口与灵活API,只需简单定义sigma_fn和rgb_sigma_fn函数即可实现加速。支持CUDA加速,并提供易于安装的预构建轮包。详细信息请参考NerfAcc官方网站。

DN-DETR - 创新查询去噪技术加速目标检测训练
DETRGithub开源项目注意力机制深度学习目标检测计算机视觉
DN-DETR通过创新的查询去噪技术加速DETR目标检测模型训练。该方法仅需50%训练周期即可达到基线模型性能,大幅提高训练效率。项目开源了DN-DETR、DN-Deformable-DETR等多个模型实现,并提供详细的模型库、使用指南和安装说明,便于研究者复现结果或将去噪训练应用于其他模型。
neuralangelo - 从图像重建高精度3D表面模型的神经网络技术
3D重建GithubNeuralangelo开源项目机器学习神经网络计算机视觉
Neuralangelo是一个开源项目,专注于从图像重建高精度3D表面模型。该项目利用深度学习方法,提供了完整的代码实现,包括数据预处理、模型训练和网格提取功能。Neuralangelo在复杂场景重建中表现优异,适用于计算机视觉和图形学研究。项目文档包含详细使用说明和常见问题解答,便于研究人员快速上手。
fast_rnnt - 快速高效的RNN-T损失计算方法
GithubPyTorchRNN-T剪枝开源项目快速实现损失计算
fast_rnnt项目实现了一种快速高效的RNN-T损失计算方法。通过pruned rnnt算法,该方法使用简单joiner网络获取修剪边界,再评估完整非线性joiner网络。项目提供简单、平滑和修剪三种RNN-T损失计算功能,支持pip安装。与其他实现相比,fast_rnnt在计算速度和内存使用方面表现优异。
nncase - 神经网络编译器 优化AI加速器性能
AI加速器GithubK230nncase开源项目模型量化神经网络编译器
nncase是专为AI加速器设计的神经网络编译器,支持多输入输出和多分支结构。它采用静态内存分配,提供算子融合优化,支持浮点和uint8量化推理,以及基于校准数据集的后量化。nncase支持零拷贝加载平面模型,适用于K230、K510和K210等芯片。它提供丰富的操作符支持、使用指南和示例,以及完整的生态系统资源,有助于高效部署AI模型。
pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
awesome-neural-rendering - 全面汇集神经渲染领域最新研究进展
3D重建GithubNeural Rendering开源项目深度学习视图合成计算机图形学
该项目汇集了神经渲染领域的前沿资源,包括逆向渲染、神经重渲染、可微分渲染和隐式神经表示等多个子领域。这份精选列表涵盖了最新研究论文、技术报告和开源项目,为研究人员和开发者提供了全面的参考资料,有助于深入了解神经渲染技术的最新进展。
nnabla-rl - 深度强化学习库,基于Neural Network Libraries构建
GPU加速GithubPythonnnablaRL开源项目深度强化学习神经网络库
nnabla-rl是基于Neural Network Libraries构建的深度强化学习库,适用于研究、开发和生产环境。该库提供简洁的Python API,集成多种经典和前沿强化学习算法,实现在线与离线训练的灵活切换。nnabla-rl支持通过nnabla-browser可视化训练过程,安装便捷,兼容GPU加速,并提供交互式示例便于快速上手。
norse - 生物启发的脉冲神经网络深度学习库
GithubNorsePyTorch开源项目深度学习神经形态计算脉冲神经网络
Norse是一个基于PyTorch的脉冲神经网络深度学习库,提供生物启发的神经元组件。它利用神经元的稀疏性和事件驱动特性,为研究人员和开发者提供现代化基础设施。Norse支持多种神经元模型、突触动力学和算法,并提供数据集集成和任务示例,适用于不同规模的实验环境。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
ncps - NCP、LTC 和 CfC 有线神经模型的 PyTorch 和 TensorFlow 实现
CfCGithubLTCNeural Circuit PoliciesPyTorchTensorFlow开源项目
神经电路策略(NCPs)是一种设计稀疏递归神经网络的方法,灵感来源于秀丽隐杆线虫的神经系统。该开源项目提供与PyTorch和TensorFlow兼容的模块,增强可审计的自主性。其安装步骤简便,并且提供了丰富的文档和互动教程,帮助用户从基础到复杂模型的创建。多种示例和教程,包括在Google Colab上的演示,让用户快速掌握NCPs的应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号