Project Icon

codebert-cpp

训练于GitHub代码库的C++代码分析模型

CodeBERT-CPP是基于Microsoft CodeBERT架构的C++代码分析模型,经100万步训练优化。该模型利用GitHub代码库数据进行掩码语言建模,主要用于CodeBERTScore评分系统,也适用于其他C++代码分析任务。作为开源项目,CodeBERT-CPP为开发者提供了一个专业的C++代码评估工具。

codebert-c - 针对C语言优化的CodeBERT模型 应用于代码生成评估
CodeBERTScoreC语言GithubHuggingface代码生成评估开源项目机器学习模型预训练模型
codebert-c是一个针对C语言优化的CodeBERT模型变体,基于microsoft/codebert-base-mlm框架开发。该模型在codeparrot/github-code-clean数据集上进行了100万步的掩码语言建模训练,主要应用于CodeBERTScore项目评估代码生成质量。除代码评分外,codebert-c还可用于多种C语言相关任务,为代码分析提供有力支持。
codebert-python - 针对Python优化的CodeBERT模型用于代码生成评估
CodeBERTScoreGitHubGithubHuggingface代码生成评估开源项目机器学习模型模型自然语言处理
该项目是基于microsoft/codebert-base-mlm模型,经过100万步训练优化的Python代码分析工具。模型使用codeparrot/github-code-clean数据集,通过掩码语言建模任务进行训练。主要应用于CodeBERTScore项目,用于评估代码生成质量,同时也适用于其他代码分析和评估任务。这一模型为开发者和研究人员提供了强大的代码分析工具,有助于提高代码质量和开发效率。
codebert-base - CodeBERT为编程与自然语言处理提供强大支持
CodeBERTGithubHuggingface代码搜索开源项目机器学习模型自然语言处理预训练模型
CodeBERT-base是一个专为编程和自然语言设计的预训练模型,基于CodeSearchNet的双模态数据训练。它采用MLM+RTD优化目标,支持代码搜索和代码到文档生成等任务。该模型不仅适用于代码补全,还提供小型版本CodeBERTa。CodeBERT-base为编程语言处理领域开辟了新的研究方向,为开发者提供了有力的工具支持。
codebert-java - CodeBERT模型针对Java代码优化 助力代码生成评估
CodeBERTGitHub代码数据集GithubHuggingface代码生成评估开源项目机器学习模型模型自然语言处理
这是一个基于microsoft/codebert-base-mlm模型训练的CodeBERT变体,专注于Java代码处理。经过100万步的掩码语言建模训练,该模型主要应用于CodeBERTScore项目,用于评估代码生成质量。它利用codeparrot/github-code-clean数据集的Java代码,不仅可用于代码生成评估,还能支持其他代码分析任务,为相关研究和应用提供了有力支持。
codebert-javascript - 基于CodeBERT的JavaScript代码评估预训练模型
CodeBERTScoreGithubHuggingface代码生成评估开源项目机器学习模型模型自然语言处理预训练模型
该模型基于microsoft/codebert-base-mlm架构,针对JavaScript代码进行了优化训练。使用codeparrot/github-code-clean数据集,经过100万步掩码语言建模任务训练。主要应用于CodeBERTScore项目,用于代码生成评估,同时也适用于其他相关任务。此模型为JavaScript代码分析和评估提供了有力工具,可满足研究人员和开发者的需求。
codebert-base-mlm - 基于掩码语言模型的编程和自然语言预训练模型
CodeBERTGithubHuggingface开源项目机器学习模型编程语言自然语言预训练模型
CodeBERT-base-mlm是Microsoft开发的编程和自然语言双模态预训练模型。它基于CodeSearchNet语料库训练,采用掩码语言模型目标,可用于代码补全、理解和生成任务。该模型支持多种编程语言,提供简洁的API接口,便于集成应用。CodeBERT-base-mlm在连接编程语言和自然语言方面展现出独特优势,为软件开发和自然语言处理领域提供了新的研究方向。
graphcodebert-base - GraphCodeBERT结合数据流信息的代码预训练模型
GithubGraphCodeBERTHuggingface代码理解开源项目数据流分析模型深度学习自然语言处理
GraphCodeBERT是基于Transformer架构的代码预训练模型,结合代码序列和数据流信息。模型包含12层、768维隐藏状态和12个注意力头,最大序列长度512。在CodeSearchNet数据集上训练,涵盖6种编程语言的230万函数-文档对,旨在增强代码理解和处理能力。
CodeBERTa-small-v1 - 基于RoBERTa架构的多语言代码理解模型
CodeBERTaGithubHuggingface代码补全开源项目机器学习模型编程语言识别自然语言处理
CodeBERTa-small-v1是一个基于RoBERTa架构的代码理解模型,在CodeSearchNet数据集上预训练。支持6种主流编程语言,采用字节级BPE分词器高效编码。该模型包含6层结构和8400万参数,可用于代码补全和编程语言识别等任务。CodeBERTa为代码分析和生成提供了有力支持,是开发人员的实用工具。
VulBERTa-MLP-Devign - 基于深度学习的源代码安全漏洞检测模型
GithubHuggingfaceVulBERTa代码漏洞检测开源项目模型深度学习自然语言处理预训练模型
VulBERTa-MLP-Devign是一种先进的深度学习模型,专门用于检测源代码中的安全漏洞。该模型采用RoBERTa架构和自定义分词流程,通过预训练真实的C/C++项目代码来学习深层次的语法和语义知识表示。在多个数据集的评估中,VulBERTa-MLP-Devign在二进制和多类漏洞检测任务上展现出卓越性能。凭借其简洁的设计理念、较小的训练数据需求和精简的模型参数,该模型为代码安全分析领域提供了一个高效而强大的工具。
Coderbert_finetuned_detect_vulnerability_on_MSR - RobertaForSequenceClassification微调的代码漏洞检测模型
CodeBertGithubHuggingfaceRoBERTa代码安全开源项目机器学习模型漏洞检测
该项目基于CodeBert微调RobertaForSequenceClassification模型,用于检测代码漏洞。研究者从MSR数据集选取平衡样本进行训练和测试,使用'func_before'字段分类代码。模型在准确率、F1值、精确率和召回率方面表现良好,为代码安全分析提供了实用工具。测试结果显示准确率达70.23%,F1值为0.6482,精确率为79.21%,召回率为54.86%。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号