Project Icon

DeepSeek-Coder-V2-Lite-Instruct-FP8

FP8量化模型优化提高大语言模型部署效率

DeepSeek-Coder-V2-Lite-Instruct-FP8是一种经过FP8量化优化的模型,旨在提升商业与研究中英文聊天助手的效率。此优化通过减少参数位数,有效降低内存和存储器需求,达到了79.60的HumanEval+基准测试得分。在vLLM 0.5.2及以上版本中实现高效部署。

Firefly-LLaMA2-Chinese - 低资源高效的中英文LLaMA2模型预训练与指令微调
Firefly-LLaMA2-ChineseGithubHuggingface中英双语模型低资源增量预训练大模型技术开源项目
本项目专注于低资源增量预训练与多轮指令微调,提升LLaMA2模型在中文领域的表现。支持对多种中英文预训练模型进行扩充与优化,开源了7B和13B的Base与Chat模型。在Open LLM Leaderboard和CMMLU榜单上表现出色,以4*V100完成高效训练,远低于其他模型的GPU资源需求。提供全项目信流程训练代码及数据,对LLaMA2、Baichuan2等多个模型进行详细评测,确保用户获得全面权威的模型性能数据。
Meta-Llama-3-8B-Instruct-GPTQ-4bit - 4位量化Llama 3指令模型实现轻量级高性能自然语言处理
GithubHuggingfacetransformers开源项目机器学习模型模型卡片模型评估自然语言处理
Meta-Llama-3-8B-Instruct-GPTQ-4bit是基于Llama 3架构的4位量化大型语言模型。通过GPTQ量化技术,该模型显著减小了体积和内存占用,同时维持了良好性能。它特别适合在资源受限环境下运行,如移动设备和边缘计算设备。该模型可用于文本生成、问答和对话等多种自然语言处理任务。研究者和开发者可以利用Hugging Face Transformers库轻松部署该模型进行推理或进一步微调。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
DeepSeek-V2 - 兼顾效率与经济性的大规模混合专家语言模型
DeepSeek-V2Github大语言模型开源项目混合专家模型自然语言处理预训练模型
DeepSeek-V2是一款基于专家混合(MoE)架构的大规模语言模型,总参数量达2360亿,每个token激活210亿参数。相较于DeepSeek 67B,该模型在提升性能的同时,显著降低了训练成本和推理资源消耗。DeepSeek-V2在多项标准基准测试和开放式生成任务中表现优异,展现了其在多领域的应用潜力。
InternVL2-2B-AWQ - 跨多语言多图像任务的高效视觉语言模型
API接口GithubHuggingfaceInternVL2-2B图像文本多模态开源项目模型模型量化
InternVL2-2B-AWQ以AWQ算法实现4bit权重量化,模型推理速度较FP16提升至2.4倍。lmdeploy兼容众多NVIDIA GPU进行W4A16推理,提升离线批量推理效率。同时,该项目提供RESTful API服务并兼容OpenAI接口,快速部署和应用于视觉-语言任务。此多语言兼容的模型不仅提高推理效率,还具备灵活的服务特性。
llama-3-cat-8b-instruct-v1-GGUF - 文本生成模型的量化选择
GithubHuggingfacellama.cpp开源项目文件下载模型模型性能质量选择量化
此项目通过llama.cpp进行模型量化,以满足多样化的硬件限制需求。量化文件选择从Q8_0到IQ1_S不等,推荐使用Q6_K和Q5_K_M文件。使用huggingface-cli可方便下载所需文件。I-quant和K-quant适应不同硬件,特别在低于Q4时,I-quant表现出色。支持CPU和Apple Metal,需注意性能平衡。
Meta-Llama-3.1-8B-Instruct-GGUF - Llama 3.1多语言指令模型的量化版本
GGUFGithubHuggingfaceMeta-Llamallama.cpp人工智能开源项目模型量化
Meta-Llama-3.1-8B-Instruct-GGUF是Llama 3.1模型的量化版本,使用llama.cpp技术实现。该项目提供多种精度的模型文件,从32GB的全精度到4GB的低精度,适应不同硬件需求。模型支持英语、德语、法语等多语言指令任务,可用于对话和问答。用户可选择合适的量化版本,在保持性能的同时优化资源使用。
Llama-2-13B-chat-GGUF - Llama 2聊天模型的量化压缩版本
GGUFGithubHuggingfaceLlama 2人工智能大语言模型开源项目模型量化
Llama 2 13B聊天模型的GGUF格式优化版本,采用2-bit到8-bit不等的量化方案,实现模型体积的大幅压缩。支持CPU和GPU环境下的高效推理,适配主流框架如llama.cpp、text-generation-webui等。通过不同量化级别的选择,可在推理性能与资源占用间实现灵活平衡。
DeepSeek-MoE - 创新MoE架构打造高效大规模语言模型
DeepSeekMoEGithubMoE架构大语言模型开源模型开源项目模型评估
DeepSeek-MoE项目开发了创新的混合专家架构语言模型,采用细粒度专家分割和共享专家隔离策略。该16.4B参数模型仅使用40%计算量就达到DeepSeek 7B和LLaMA2 7B的性能水平。模型可在单个40GB内存GPU上直接部署运行,无需量化,为学术和商业研究提供了高效便捷的工具。
Qwen2.5-32B-Instruct-AWQ - 支持128K长文本的多语言量化大模型
GithubHuggingfaceQwen2.5人工智能多语言处理大语言模型开源项目模型量化模型
Qwen2.5-32B指令微调模型经AWQ量化后参数量达32.5B,显著增强了编程和数学计算能力。模型支持29种语言交互,可处理128K tokens长文本,具备结构化数据理解和JSON生成等核心功能。基于transformers架构开发,通过量化技术实现高效部署,适用于大规模AI应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号