Project Icon

Mistral-Nemo-Instruct-2407-FP8

FP8量化技术在模型优化与部署中的应用

Mistral-Nemo-Instruct-2407-FP8通过FP8量化技术提升了模型的内存和体积效率,主要用于商业和研究。该模型适用于英语聊天助手,利用参数位数的减少节省约50%的资源。结合vLLM>=0.5.0的高效推理环境,优化部署性能。量化由AutoFP8完成,Neural Magic计划转向支持更多方案的llm-compressor。尽管量化后某些评测得分略有下降,但保持的性能恢复率使其成为资源效率化的优选方案。

Qwen2.5-7B-Instruct-GGUF - Qwen2.5-7B-Instruct的多样化量化方案增强模型适应性
ARM芯片GithubHuggingfaceQwen2.5-7B-Instruct开源项目性能优化模型训练数据集量化
项目采用llama.cpp的最新量化方案对Qwen2.5-7B-Instruct模型进行优化,提供灵活的量化格式以匹配各类硬件环境。更新的上下文长度管理与先进的分词器,无论选择传统的Q-K量化还是新兴的I-quant,各种档次的文件都能帮助设备实现性能与速度的平衡。尤其是对ARM架构的专门优化,即便在低RAM环境下,用户也能凭借有限的资源获得可行的使用体验。
Mistral-Nemo-Base-2407-bnb-4bit - 提高模型微调速度并优化内存占用
GithubGoogle ColabHuggingfaceMistralUnsloth开源项目微调效率模型
本项目使用Unsloth技术对Llama 3.1、Gemma 2和Mistral等模型提高微调速度,减少内存使用高达70%。通过免费的Google Colab笔记本,用户能够轻松完成微调过程,非常适合初学者使用。支持的模型包括Llama-3 8b、Gemma 7b、Mistral 7b等,这些模型在性能和内存使用上均有显著提升。
mistral-7b-instruct-v0.3 - 高效finetune解决方案,减少内存占用提升速度
GithubHuggingfaceMistralUnsloth开源项目性能提升模型神经网络调优
这款通过Unsloth技术的Google Colab笔记本集合,简化了Mistral、Gemma和Llama等AI模型的finetune过程。简单操作即可提高模型速度超过两倍,并显著降低内存占用,同时允许将优化的模型导出为GGUF、vLLM,或上传至Hugging Face,适合初学者使用。
Mixtral-8x7B-Instruct-v0.1-GGUF - Mixtral-8x7B多语言模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral AIMixtral 8X7B开源项目模型量化
本项目提供Mixtral-8x7B-Instruct-v0.1模型的GGUF量化版本。GGUF格式支持CPU和GPU高效推理,项目包含2至8比特多种量化等级文件。模型支持英、法、意、德、西等语言,适用多种NLP任务。用户可通过llama.cpp等工具便捷运行这些模型。
TinyMistral-248M - 使用小规模数据集进行高效模型预训练
GithubHuggingfaceMistral 7B参数开源项目微调模型评估结果语言模型
TinyMistral-248M基于Mistral 7B模型,参数减少至约2.48亿,专为下游任务微调设计。预训练使用了748.8万个实例,支持文本生成功能,拥有约32,768个token的上下文长度。模型在InstructMix评估中的平均困惑度为6.3,未来将在多数据集上增加训练周期,验证无需大数据集即可进行有效预训练的可能性,并在多个指标测试中表现良好。
Qwen2-1.5B-Instruct-IMat-GGUF - 运用量化技术优化Qwen2-1.5B-Instruct模型的文本生成能力
GithubHuggingfaceIMatrixQwen2-1.5B-Instruct开源项目文本生成模型量化
项目利用llama.cpp对Qwen2-1.5B-Instruct模型进行量化,支持从8bit到1bit的多种位数及IMatrix数据集。这种方法能减少模型体积且保持性能多样,适用于不同文本生成任务。用户可使用huggingface-cli简便下载及合并文件,以满足不同应用需求。项目因其灵活性及高效性,适宜不同计算资源的使用者,为其提供多样选择。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
c4ai-command-r-08-2024-GGUF - c4ai-command-r-08-2024模型的量化方法解析
CohereGithubHugging FaceHuggingfaceLlamacpp开源项目模型模型下载量化
该项目利用llama.cpp工具对c4ai-command-r-08-2024模型进行量化,提供多种文件选择以满足不同计算需求。用户可参考下载和使用指南,根据GPU和RAM容量选择合适的量化格式,以优化性能。项目还提供性能图表和I-quant与K-quant选择建议,旨在帮助用户进行有效配置。这些量化文件适合在LM Studio中运行,强调高效推理和广泛适用性。
Meta-Llama-3.1-70B-Instruct-GPTQ-INT4 - INT4量化版提升多语言对话效率
GPTQGithubHuggingfaceMeta-Llama-3.1-70B-Instruct大语言模型开源项目推理模型量化
本项目展示了Meta Llama 3.1 70B Instruct模型的INT4量化版本。通过AutoGPTQ技术,将原FP16模型压缩至INT4精度,在维持性能的同时显著减少内存使用,仅需约35GB显存即可运行。该项目兼容多个推理框架,如Transformers、AutoGPTQ、TGI和vLLM,便于根据不同需求进行选择。项目还附有详细的量化复现指南,方便用户独立完成模型量化过程。
Meta-Llama-3.1-8B-Instruct-quantized.w4a16 - 基于LLaMA 3.1的INT4量化指令模型
GithubHuggingfaceMeta-LlamavLLM多语言支持开源项目模型评估基准量化模型
Meta-Llama-3.1-8B-Instruct模型的INT4量化版本,将模型参数从16bit压缩至4bit,有效降低75%的存储和显存占用。模型在Arena-Hard、OpenLLM、HumanEval等基准测试中表现稳定,量化后性能恢复率保持在93%-99%之间。通过vLLM后端部署,支持8种语言处理,适合商业及研究领域应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号