Project Icon

TinyLlama-1.1B-Chat-v1.0-marlin

TinyLlama-1.1B量化推理解决方案

本项目提供了一种以TinyLlama-1.1B为基础的量化聊天模型,运用GPTQ技术实现内存优化与推理加速,支持高效的4位推理。借助nm-vllm引擎,用户能快速实现部署,并可通过Python管道进行本地推理。详细的量化与Marlin格式转换流程保障了模型的高效表现。此外,Neural Magic的Slack社区欢迎加入以获取支持和交流更多关于神经网络及AI的资讯。

TinyLlama_v1.1 - 精简版Llama模型 专注多领域应用
GithubHuggingfaceTinyLlama开源项目模型神经网络自然语言处理语言模型预训练
TinyLlama_v1.1是一个基于Llama 2架构的紧凑型语言模型,仅有1.1B参数。通过2万亿token的预训练,该项目开发了三个特定领域的变体:通用型、数学与代码增强型和中文优化型。这些模型旨在为计算资源受限的应用场景提供高效的语言处理解决方案。
Llama-2-7B-Chat-AWQ - 高效4位量化提升AI对话性能
GithubHuggingfaceLlama 2Meta低比特量化对话生成开源项目文本生成模型
AWQ是一种高效的4位量化方法,在多用户环境中的并发推理中表现出色。它通过降低模型计算需求,实现小型GPU的部署,从而节省成本。AWQ支持vLLM服务器,尽管总体吞吐量低于未量化模型,但在有限硬件环境中提高了推理效率,例如70B模型可在48GB显存的GPU上运行。AWQ适合如Llama 2 7B Chat的对话优化模型,为AI助手应用提供成本效益高的解决方案。
Llama3.1-70B-Chinese-Chat - 中英双语优化的Llama3.1-70B指令微调模型
GithubHuggingfaceLlama3.1-70B-Chinese-Chat开源项目文本生成模型细致调整角色扮演语言模型
项目基于Meta-Llama-3.1-70B-Instruct模型,优化针对中英用户,支持角色扮演、函数调用和数学能力。模型使用超10万偏好对数据集训练,提供q3_k_m、q4_k_m、q8_0和f16 GGUF版本。使用ORPO算法进行全参数微调,并基于LLaMA-Factory框架。用户需升级transformers库以下载使用BF16模型,亦可使用GGUF模型进行多种方式推理。
TinyLlama-1.1B-intermediate-step-1195k-token-2.5T - TinyLlama项目中的1.1B模型实现高效计算
GithubHuggingfaceLLama 2TinyLlama优化开源项目模型模型参数预训练
TinyLlama通过创新方法,在2.5万亿tokens数据集上实现预训练,紧凑的1.1B参数设计提高了计算和内存效率,适用于多种开源项目。
LlamaChat - Mac平台上的本地大型语言模型聊天工具
AI工具AlpacaGPT4AllLLaMALlamaChat本地聊天模型
LlamaChat是Mac平台上的开源聊天应用,支持在本地运行LLaMA、Alpaca和GPT4All等大型语言模型。用户可直接导入PyTorch模型检查点或.ggml文件,灵活选择模型。该应用基于llama.cpp和llama.swift构建,完全免费开源,为用户提供了便捷途径来体验先进的语言模型技术。
Meta-Llama-3.1-8B-Instruct-GPTQ-INT4 - Meta-Llama-3.1-8B-Instruct模型的INT4量化版本
GPTQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的INT4量化版本,由社区开发。该版本将原FP16模型量化为INT4,支持多语言对话,在行业基准测试中表现优异。模型仅需约4GB显存即可加载,兼容多种推理框架。项目提供详细使用指南和量化复现方法,适用于资源受限环境下的高效部署。
Llama3-ChatQA-1.5-8B - 强化对话问答和检索增强生成的高性能AI模型
GithubHuggingfaceLlama3-ChatQA-1.5人工智能开源项目检索增强生成模型自然语言处理问答系统
基于Llama-3开发的大语言模型,专注于优化对话式问答和检索增强生成能力。模型提供8B和70B两个版本,采用改进的训练方案,增强了表格理解和算术计算能力。在ChatRAG Bench评测中,模型在多个数据集上表现优异,尤其擅长处理上下文对话和文档检索。支持完整文档输入和分块检索两种使用方式,适用于多种对话问答场景。
docker-llama2-chat - 通过Docker快速部署LLaMA2大模型的方法介绍
DockerGithubLLaMA2MetaAITransformers开源项目量化
项目介绍了如何通过Docker快速部署LLaMA2大模型,支持官方7B、13B模型及中文7B模型。用户只需三步即可上手,并提供量化版本支持CPU推理。详细教程和一键运行脚本帮助用户轻松构建和运行模型。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
Llama-3.2-1B-Instruct-q4f32_1-MLC - 基于MLC格式的Llama指令微调对话模型支持多平台轻量级部署
GithubHuggingfaceLlamaMLC人工智能开源框架开源项目模型语言模型
基于Meta Llama-3.2-1B-Instruct转换的MLC格式模型,采用q4f32_1量化方案,针对MLC-LLM和WebLLM项目进行优化。模型提供命令行交互、REST服务部署和Python API调用功能,可灵活应用于各类场景。具备快速部署和高效对话能力,适合构建轻量级AI对话应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号