Project Icon

yolos-small-finetuned-license-plate-detection

车牌识别微调模型提升物体检测能力

YOLOS小型模型经过微调适用于车牌检测,使用5200张图片进行训练,并在380张图片上验证,实现49.0的平均精度。模型支持PyTorch平台,并通过Python代码执行对象检测与边界框预测。其此前版本曾在ImageNet-1k和COCO 2017数据集上进行训练,具备卓越的识别性能。

LLaVAR - 优化视觉指令微调的文本丰富图像理解模型
GithubLLaVAROCR能力多模态大语言模型开源项目文本丰富图像理解视觉指令微调
LLaVAR项目致力于增强大型语言模型对文本丰富图像的理解能力。通过改进视觉指令微调方法,该项目显著提升了模型在OCR相关任务上的表现。LLaVAR开源了模型权重、训练数据,并提供了环境配置、训练脚本和评估方法,为相关研究和开发提供了全面支持。
bert-base-multilingual-cased-finetuned-langtok - 基于多语言BERT的语言识别模型实现99.03%准确率
BERTGithubHuggingface多语言模型开源项目微调模型自然语言处理语言识别
这是一个基于bert-base-multilingual-cased的语言识别微调模型。模型在评估集上的准确率为99.03%,F1分数达到0.9087。模型采用Adam优化器和线性学习率调度器,经过3轮训练完成。开发框架使用Transformers 4.44.2和PyTorch 2.4.1,可应用于语言识别相关任务。
owlv2-base-patch16 - 零样本文本对象检测,提高计算机视觉的识别效果
CLIPGithubHuggingfaceOWLv2图像编码器开放词汇物体检测开源项目模型零样本目标检测
OWLv2是一种多模态模型,通过结合CLIP的骨干和ViT样的Transformer,实现零样本文本对象检测。通过去除视觉模型的代币池层,并加入轻量级的分类和框头部,提升开放词汇分类的效果。使用公开的图像-文本数据集训练和微调,旨在优化图像与文本的匹配度。该模型目标帮助研究人员探索计算机视觉模型的鲁棒性和泛化性能,特别适用于未标注对象的识别领域,主要受众为AI研究人员
llm-finetuning - Modal和axolotl驱动的大语言模型高效微调框架
DeepSpeedGithubLLM微调LoRAModalaxolotl开源项目
这个开源项目整合了Modal和axolotl,为大语言模型微调提供了一个高效框架。它采用Deepspeed ZeRO、LoRA适配器和Flash Attention等先进技术,实现了高性能的模型训练。该框架支持云端部署,简化了资源管理流程,并可灵活适配不同模型和数据集。项目还提供了全面的配置说明和使用指南,方便开发者快速上手和定制化应用。
florence2-finetuning - 视觉语言模型的高效微调实现
Florence-2Github分布式训练开源项目微调微软视觉语言模型
本项目展示了Florence-2模型的微调方法。Florence-2是一个基础视觉语言模型,特点是模型小且性能强。项目包含模型安装、数据准备和代码修改说明,并提供单GPU及分布式训练脚本。这些工具可用于Florence-2的特定任务训练,适用于各种计算机视觉和视觉语言任务。
awesome-tiny-object-detection - 微小目标检测研究前沿技术与资源汇总
Github人工智能小目标检测开源项目深度学习目标检测计算机视觉
该项目汇集微小目标检测领域的前沿研究成果和资源。内容涵盖普通微小目标、微小人脸和微小行人检测等多个子领域,同时提供相关数据集、综述文章和挑战赛信息。项目为研究人员和从业者提供了解该领域最新进展的重要参考。
detr-resnet-101 - DETR目标检测模型:结合ResNet-101与Transformer架构
COCODETRGithubHuggingfaceTransformer开源项目模型物体检测计算机视觉
DETR是一种创新的端到端目标检测模型,结合了Transformer架构和ResNet-101骨干网络。该模型在COCO 2017数据集上训练,能高效检测图像中的多个物体。通过独特的对象查询机制和双向匹配损失函数,DETR在目标检测任务中表现优异,达到43.5%的平均精度。这一方法为计算机视觉领域开辟了新的研究方向。
yolort - 简易高效的YOLOv5目标检测工具
GithubONNXTensorRTYOLOv5yolort对象检测开源项目
yolort项目致力于简化和优化YOLOv5的训练与推理。采用动态形状机制,结合预处理和后处理,支持LibTorch、ONNX Runtime、TVM、TensorRT等多种后端的轻松部署。项目遵循简洁设计理念,安装与使用便捷,支持通过PyPI和源码安装。提供丰富的推理接口示例和详细文档,使目标检测更为轻松,适用于广泛的应用场景。
cards_bottom_left_swin-tiny-patch4-window7-224-finetuned-dough_100_epochs - 基于 Swin Transformer 的图像分类模型实现
GithubHuggingfacemicrosoft/swin-tiny-patch4-window7-224人工智能图像分类开源项目数据训练机器学习模型
这是一个基于 Microsoft Swin-Tiny 的图像分类模型。模型经过100轮训练,使用Adam优化器和线性学习率调度,batch size为128,在测试集达到59.47%准确率。该模型结合了Transformer架构与图像处理技术,可用于图像分类任务。模型采用了先进的深度学习技术,通过对大量图像数据的学习,提高了分类的准确性和效率。适用于各种需要自动化图像分类的应用场景。
OpenALPR - 自动车牌识别和车辆特征分析平台
AI工具OpenALPRRekor人工智能车牌识别车辆识别
OpenALPR是一款自动车牌识别和车辆分析平台,可实时识别车牌号码、车辆品牌、型号和颜色等信息。平台提供Scout和CarCheck两款主要产品,适用于执法、停车管理、物业安防和软件开发等领域。其特点包括快速部署、高精度识别和支持多国车牌,为用户提供有价值的车辆数据分析,助力提升业务效率和社区安全。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号