Project Icon

Reflection-70b-PreciseQuant-6bpw-gguf

高精度量化模型 实现接近完美的性能保留

本项目提供Reflection-Llama-3.1-70B模型的高精度量化版本。采用精细调优的量化技术,将模型压缩至50GB,同时保持99.96%的困惑度性能。相较于常规FP8量化,精度显著提升。项目包含快速下载指南和运行说明,便于部署使用。

fsdp_qlora - 量化技术实现大型语言模型的高效训练
FSDPGithubLLMQLoRA开源项目微调量化
fsdp_qlora项目结合FSDP与量化LoRA,实现了在有限显存GPU上高效训练大型语言模型。支持HQQ和bitsandbytes的4位量化、LoRA、DoRA等多种策略,大幅降低内存占用。项目提供详细文档,便于快速上手使用。该方法使在消费级GPU上训练70B参数模型成为可能,为大模型研究提供了实用工具。
ChatGLM-Efficient-Tuning - 微调ChatGLM-6B模型,支持多种训练和量化方法
ChatGLMGithubRLHF开源项目数据集机器学习高效微调
ChatGLM-Efficient-Tuning项目提供高效微调ChatGLM-6B模型的工具和方法,支持LoRA、P-Tuning V2等多种微调方式,适用于单GPU和多GPU训练。项目还提供Web UI和CLI操作,支持4-bit和8-bit量化训练。通过丰富的数据集和功能,如强化学习和模型评估,满足不同场景的微调需求。详情请参见项目Wiki。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQATGithubPyTorch大语言模型开源项目模型压缩量化训练
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
LoftQ - 大型语言模型低资源量化微调新方法
GithubLoRALoftQ大语言模型开源项目微调量化
LoftQ是一种为大型语言模型设计的量化微调方法。它通过寻找最佳的量化LoRA初始化,实现有限GPU资源下的高效模型微调。LoftQ支持LLAMA、Falcon、Mistral等主流模型,提供相关工具和示例代码。在WikiText-2和GSM8K等任务上,LoftQ展现出优秀性能,为低资源环境中的LLM应用开发创造了新可能。
awesome-model-quantization - 全面的模型量化研究资源
Awesome Model QuantizationBiBenchEfficient_AIGC_RepoGithubMQBenchSurvey of Quantization开源项目
此项目汇集了关于模型量化的各类论文、文档和代码,为研究者提供丰富的参考资源。内容包括二值化和量化方法的调研、基准测试,以及生成模型的压缩和加速技术。项目持续更新,并欢迎对未收录研究成果的贡献。感谢所有已作出贡献的研究者。
llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
llama-lora-fine-tuning - 单GPU微调LLaMA模型的高效方法
GPUGithubLLaMAVicuna开源项目微调语料库
本项目展示了在单个16G GPU上微调vicuna-7b模型的方法。通过采用LoRA、半精度模型和8位加载等技术,有效降低了内存需求。项目详细说明了环境配置、模型准备、语料处理和微调过程,并提供P100和A100的性能数据。这种方法使研究者和开发者能在有限硬件资源下进行大型语言模型的定制化训练。
ppq - 多功能的神经网络量化工具
GithubOnnxPPQTensorRT开源项目神经网络量化量化优化
PPQ 是一个适用于工业应用的神经网络量化工具。通过将浮点运算转换为定点运算,它显著提升系统功耗效率和执行速度。具备高度扩展性,用户可自定义量化过程,并结合多种硬件和推理库使用。版本 0.6.6 更新了图模式匹配、图融合功能,并新增 FP8 量化规范和 PFL 基础类库。支持 TensorRT, Openvino, Onnxruntime 等推理框架,实现高效的神经网络量化部署。
Chinese-Llama-2-7b - 开源且可商用的中文Llama2模型,兼容中英文SFT数据集与llama-2-chat格式
Chinese Llama 2 7BGithubHuggingFaceLlama2开源项目模型开源量化模型
项目提供开源且商用的中文Llama2模型及中英文SFT数据集,兼容llama-2-chat格式并支持优化。项目包含在线演示、多模态模型、Docker部署和API接口,支持多种硬件配置,用户可快速下载与测试。
rwkv.cpp - 多精度量化推理和CPU优化的大语言模型
GithubPythonRWKVcuBLASggmlhipBLAS开源项目
该项目将RWKV-LM移植到ggerganov的ggml,支持FP32、FP16及量化的INT4、INT5和INT8推理,主要针对CPU使用,同时兼容cuBLAS。项目提供C库和Python封装。RWKV是一种不同于Transformer的大语言模型架构,只需前一步状态计算logits,适合长上下文使用。支持RWKV v5和v6模型以及LoRA检查点加载,适用于高质量和高性能需求的场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号