Project Icon

roberta-base-japanese-with-auto-jumanpp

日语RoBERTa预训练语言模型

RoBERTa日语基础模型通过日本维基百科和CC-100语料库训练而成,采用Juman++分词系统和32000规模词表,支持掩码语言建模与下游任务微调。模型经过A100 GPU集群训练,在JGLUE基准测试中展现出稳定性能,可作为日语自然语言处理的基础模型使用。

llm-jp-13b-v2.0 - 改进日本大型语言模型的开发与应用
GithubHuggingfacellm-jp大语言模型开源项目指令微调模型自然语言处理预训练
由日本团队发起,项目提供基于Transformer架构的大型语言模型,支持多种编程语言和文本生成,专注于自然语言处理。模型经过大规模数据集的预训练和细化调试,展现出卓越的文本生成能力。
mDeBERTa-v3-base-finetuned-nli-jnli - 基于多语言NLI和JGLUE数据集微调的日语NLP模型
GithubHuggingfacemDeBERTa-v3多语言模型开源项目微调模型自然语言推理零样本分类
该模型基于微软mdeberta-v3-base在多语言NLI和JGLUE数据集上微调而来。它支持日语零样本文本分类和跨语言自然语言推理任务,在评估集上达到68.08%准确率和67.42% F1分数。模型可应用于日语主题分类、跨语言蕴含关系判断等自然语言处理任务,为日语NLP应用提供了有力支持。
japanese-gpt-neox-3.6b - 基于GPT-NeoX架构的36亿参数日语大语言模型
GPT-NeoXGithubHuggingface开源项目日语预训练模型深度学习自然语言处理语言模型
japanese-gpt-neox-3.6b是一个基于GPT-NeoX架构的日语大语言模型,拥有36亿参数。该模型在超过3125亿个日语语料库tokens上训练,包括CC-100、C4和维基百科数据。模型采用36层、2816隐藏层的transformer架构,验证困惑度为8.68。使用sentencepiece分词器,词表大小32,000,支持UTF-8字节分解。模型已开源并提供训练数据和使用文档。
roberta-base - 基于大规模韩语数据集的RoBERTa预训练语言模型
GithubHuggingfaceKLUERoBERTa开源项目机器学习模型自然语言处理韩语模型
RoBERTa-base是KLUE(Korean Language Understanding Evaluation)项目开发的韩语预训练模型,基于BertTokenizer分词器构建,支持transformers库直接调用。作为韩语语言理解评估框架的基础模型,主要应用于韩语自然语言处理任务和相关研究工作。
japanese-stablelm-base-gamma-7b - 日语7B参数语言模型,增强语言建模与任务表现
AI模型GithubHuggingfaceJapanese Stable LMStability AI开源项目模型自然语言处理语言生成
该模型由Stability AI开发,具备7B参数,专注于优化日语语言建模和任务性能,通过Mistral-7B-v0.1的日语持续预训练,获取丰富语言知识。它应用于多个场景并允许微调,数据集丰富包括Wikipedia与mc4。注意,在生产环境中应小心潜在的偏见与限制,但其开放性使其成为多种项目的基础。
bert-base-japanese-v3-unsup-simcse-jawiki - 使用无监督SimCSE的BERT日文模型特性和应用
GithubHuggingfaceSimCSEbert-base-japanese-v3-unsup-simcse-jawikitransformers大规模语言模型开源项目模型语义相似度
本项目利用无监督SimCSE方法对BERT大型语言模型进行微调,重点在于日文数据集的应用。通过cl-tohoku/bert-base-japanese-v3模型和来自jawiki的句子数据集进行训练,旨在提高语言理解与相似度计算的能力。项目附带丰富的使用案例,例如通过Colab笔记本进行的训练与推论,帮助研究者与开发者了解模型的实际应用。这一无监督方法为自然语言处理任务提供了创新方案,尤其适合有特定语言需求的专业项目。
chinese-roberta-wwm-ext-large - 中文自然语言处理的全词掩码预训练模型
BERTGithubHuggingface中文自然语言处理全词掩码开源项目模型知识蒸馏预训练模型
中文BERT全词掩码预训练模型加速中文自然语言处理,提升精准语义理解。基于Google BERT并结合全词掩码策略,其在文本分类、情感分析以及问答系统等多种NLP应用中表现优异,是探索中文语言理解的有力工具。
sbert-base-ja - 日语句向量模型:基于BERT的自然语言处理工具
BERTGithubHuggingface句子相似度开源项目日语SNLI数据集日语自然语言处理模型语义表示
sbert-base-ja是一个日语句向量模型,基于BERT架构开发。该模型利用colorfulscoop/bert-base-ja作为预训练基础,并通过日语SNLI数据集进行了微调。它能够将日语文本转化为向量形式,主要应用于句子相似度计算和文本分类等领域。模型采用SentenceTransformer结构,为开发者提供了便捷的API,有助于在多种自然语言处理任务中快速部署和应用。
t5-large-medium - 基于Transformer的日文预训练模型,提高NLP任务性能
GithubHuggingfaceRetrievaT5 v1.1Transformer开源项目日语模型预训练
该T5 v1.1模型基于Transformer架构,专为日文语料进行预训练。通过使用GEGLU激活函数代替ReLU,提升了文本生成质量。模型在预训练时关闭Dropout以提升泛化能力,微调时可重启。训练数据包括mC4/ja和日本Wikipedia,确保日文内容的纯净性。此大型模型拥有约7.7亿参数,适用于广泛的日文自然语言处理任务,表现出优异的性能与适应性。
japanese-gpt2-small - rinna开发的轻量级日语自然语言处理模型
GPT-2GithubHuggingface开源项目文本生成日语模型机器学习模型自然语言处理
japanese-gpt2-small是rinna公司开发的轻量级日语GPT-2模型。该模型基于CC-100和日语维基百科数据集训练,采用12层768隐藏单元的Transformer架构。它使用SentencePiece分词器,适用于文本生成等多种自然语言处理任务。模型在V100 GPU上训练约15天,验证集困惑度达到21左右。作为日语NLP的预训练基础模型,japanese-gpt2-small为相关研究和应用提供了有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号